活性炭再生的高级氧化工艺:从基础到应用

IF 4.8 Q1 ENVIRONMENTAL SCIENCES ACS ES&T water Pub Date : 2024-07-16 DOI:10.1021/acsestwater.4c0028010.1021/acsestwater.4c00280
Jian Liu, Shaohua Chen, Xin Ye, Jiawei Chen and Jianzhi Huang*, 
{"title":"活性炭再生的高级氧化工艺:从基础到应用","authors":"Jian Liu,&nbsp;Shaohua Chen,&nbsp;Xin Ye,&nbsp;Jiawei Chen and Jianzhi Huang*,&nbsp;","doi":"10.1021/acsestwater.4c0028010.1021/acsestwater.4c00280","DOIUrl":null,"url":null,"abstract":"<p >Activated carbon (AC) is a cornerstone in water treatment technologies and is renowned for its robust ability to eliminate a wide range of contaminants. However, the adsorption capability of AC diminishes over time and eventually reaches saturation. Given environmental and economic considerations, the regeneration of spent AC emerges as a preferable option. Advanced oxidation processes (AOPs) have been considered a promising approach for spent AC regeneration due to their high efficiency in degrading organic pollutants. This review provides an overview of established AOPs technologies for AC regeneration, elucidating their regeneration mechanisms and key influencing factors. A critical comparison of physicochemical transformations in postregeneration AC and the regeneration efficiency through various AOPs technologies is presented. Moreover, the review addresses some common overlooks in AC regeneration experimental designs and explores the scalability of AOPs regeneration technologies. Finally, future research directions were suggested to improve the AOPs-based regeneration technologies.</p>","PeriodicalId":93847,"journal":{"name":"ACS ES&T water","volume":"4 8","pages":"3119–3130 3119–3130"},"PeriodicalIF":4.8000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced Oxidation Processes for Activated Carbon Regeneration: From Fundamental to Application\",\"authors\":\"Jian Liu,&nbsp;Shaohua Chen,&nbsp;Xin Ye,&nbsp;Jiawei Chen and Jianzhi Huang*,&nbsp;\",\"doi\":\"10.1021/acsestwater.4c0028010.1021/acsestwater.4c00280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Activated carbon (AC) is a cornerstone in water treatment technologies and is renowned for its robust ability to eliminate a wide range of contaminants. However, the adsorption capability of AC diminishes over time and eventually reaches saturation. Given environmental and economic considerations, the regeneration of spent AC emerges as a preferable option. Advanced oxidation processes (AOPs) have been considered a promising approach for spent AC regeneration due to their high efficiency in degrading organic pollutants. This review provides an overview of established AOPs technologies for AC regeneration, elucidating their regeneration mechanisms and key influencing factors. A critical comparison of physicochemical transformations in postregeneration AC and the regeneration efficiency through various AOPs technologies is presented. Moreover, the review addresses some common overlooks in AC regeneration experimental designs and explores the scalability of AOPs regeneration technologies. Finally, future research directions were suggested to improve the AOPs-based regeneration technologies.</p>\",\"PeriodicalId\":93847,\"journal\":{\"name\":\"ACS ES&T water\",\"volume\":\"4 8\",\"pages\":\"3119–3130 3119–3130\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsestwater.4c00280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T water","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestwater.4c00280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

活性炭(AC)是水处理技术的基石,以其消除各种污染物的强大能力而闻名。然而,随着时间的推移,活性炭的吸附能力会逐渐减弱,最终达到饱和状态。考虑到环境和经济因素,废 AC 的再生成为一种可取的选择。高级氧化工艺(AOPs)在降解有机污染物方面具有很高的效率,因此被认为是一种很有前景的废 AC 再生方法。本综述概述了用于 AC 再生的成熟 AOPs 技术,阐明了其再生机制和关键影响因素。本综述对再生后 AC 的物理化学转化以及各种 AOPs 技术的再生效率进行了重要比较。此外,综述还讨论了交流电再生实验设计中的一些常见缺陷,并探讨了 AOPs 再生技术的可扩展性。最后,提出了改进基于 AOPs 的再生技术的未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advanced Oxidation Processes for Activated Carbon Regeneration: From Fundamental to Application

Activated carbon (AC) is a cornerstone in water treatment technologies and is renowned for its robust ability to eliminate a wide range of contaminants. However, the adsorption capability of AC diminishes over time and eventually reaches saturation. Given environmental and economic considerations, the regeneration of spent AC emerges as a preferable option. Advanced oxidation processes (AOPs) have been considered a promising approach for spent AC regeneration due to their high efficiency in degrading organic pollutants. This review provides an overview of established AOPs technologies for AC regeneration, elucidating their regeneration mechanisms and key influencing factors. A critical comparison of physicochemical transformations in postregeneration AC and the regeneration efficiency through various AOPs technologies is presented. Moreover, the review addresses some common overlooks in AC regeneration experimental designs and explores the scalability of AOPs regeneration technologies. Finally, future research directions were suggested to improve the AOPs-based regeneration technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
期刊最新文献
Issue Editorial Masthead Issue Publication Information ACS ES&T Water Presents the 2023 Excellence in Review Awards Advancing Sustainable Water Quality Monitoring and Remediation in Malaysia: Innovative Analytical Solutions for Detecting and Removing Emerging Contaminants Correction to “Sorption Behavior of Trace Organic Chemicals on Carboxylated Polystyrene Nanoplastics”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1