Olatunbosun Adu, Michael Taylor Bryant, Xingmao Ma* and Virender K. Sharma*,
{"title":"预测水培植物对全氟和多氟烷基物质 (PFAS) 的吸收和转移的机器学习方法","authors":"Olatunbosun Adu, Michael Taylor Bryant, Xingmao Ma* and Virender K. Sharma*, ","doi":"10.1021/acsestengg.4c0010710.1021/acsestengg.4c00107","DOIUrl":null,"url":null,"abstract":"<p >Plant uptake and accumulation of per- and polyfluoroalkyl substances (PFAS), represented by the root concentration factor (RCF), shoot concentration factor (SCF), and translocation factor (TF), were predicted using machine learning (ML) models from experimental data with 19 PFAS compounds and nine plant species. Unsupervised principal component analysis (PCA) was first used to classify the input data, and then supervised ML models, including multiple linear regression model (MLR), artificial neural network (ANN), random forest (RF), and support vector machine (SVM) algorithms, were applied for predicting the chosen output parameters. RF displayed the highest prediction accuracy among the tested models. Feature importance analysis performed using RF showed that the molecular weight, exposure time, and plant species are the most important parameters for predicting RCF, SCF, and TF in hydroponic systems. RF was further applied to estimate RCF, SCF, and TF of the two most prevalent PFAS compounds, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), and their common alternatives and the results revealed that their common replacing compounds have either comparable or higher accumulation in plant roots and shoots. Our results demonstrated that the ML approach could generate critical insight into PFAS plant uptake and accumulation and shed light on the potential food safety concerns from PFAS and their replacements.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsestengg.4c00107","citationCount":"0","resultStr":"{\"title\":\"A Machine Learning Approach for Predicting Plant Uptake and Translocation of Per- and Polyfluoroalkyl Substances (PFAS) from Hydroponics\",\"authors\":\"Olatunbosun Adu, Michael Taylor Bryant, Xingmao Ma* and Virender K. Sharma*, \",\"doi\":\"10.1021/acsestengg.4c0010710.1021/acsestengg.4c00107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Plant uptake and accumulation of per- and polyfluoroalkyl substances (PFAS), represented by the root concentration factor (RCF), shoot concentration factor (SCF), and translocation factor (TF), were predicted using machine learning (ML) models from experimental data with 19 PFAS compounds and nine plant species. Unsupervised principal component analysis (PCA) was first used to classify the input data, and then supervised ML models, including multiple linear regression model (MLR), artificial neural network (ANN), random forest (RF), and support vector machine (SVM) algorithms, were applied for predicting the chosen output parameters. RF displayed the highest prediction accuracy among the tested models. Feature importance analysis performed using RF showed that the molecular weight, exposure time, and plant species are the most important parameters for predicting RCF, SCF, and TF in hydroponic systems. RF was further applied to estimate RCF, SCF, and TF of the two most prevalent PFAS compounds, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), and their common alternatives and the results revealed that their common replacing compounds have either comparable or higher accumulation in plant roots and shoots. Our results demonstrated that the ML approach could generate critical insight into PFAS plant uptake and accumulation and shed light on the potential food safety concerns from PFAS and their replacements.</p>\",\"PeriodicalId\":7008,\"journal\":{\"name\":\"ACS ES&T engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsestengg.4c00107\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsestengg.4c00107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
A Machine Learning Approach for Predicting Plant Uptake and Translocation of Per- and Polyfluoroalkyl Substances (PFAS) from Hydroponics
Plant uptake and accumulation of per- and polyfluoroalkyl substances (PFAS), represented by the root concentration factor (RCF), shoot concentration factor (SCF), and translocation factor (TF), were predicted using machine learning (ML) models from experimental data with 19 PFAS compounds and nine plant species. Unsupervised principal component analysis (PCA) was first used to classify the input data, and then supervised ML models, including multiple linear regression model (MLR), artificial neural network (ANN), random forest (RF), and support vector machine (SVM) algorithms, were applied for predicting the chosen output parameters. RF displayed the highest prediction accuracy among the tested models. Feature importance analysis performed using RF showed that the molecular weight, exposure time, and plant species are the most important parameters for predicting RCF, SCF, and TF in hydroponic systems. RF was further applied to estimate RCF, SCF, and TF of the two most prevalent PFAS compounds, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), and their common alternatives and the results revealed that their common replacing compounds have either comparable or higher accumulation in plant roots and shoots. Our results demonstrated that the ML approach could generate critical insight into PFAS plant uptake and accumulation and shed light on the potential food safety concerns from PFAS and their replacements.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.