配水系统中的分区渗漏检测:由时空图卷积网络增强的专业深度学习框架

IF 4.8 Q1 ENVIRONMENTAL SCIENCES ACS ES&T water Pub Date : 2024-07-31 DOI:10.1021/acsestwater.4c0028510.1021/acsestwater.4c00285
Tianwei Mu*, Chunzheng Zhang, Manhong Huang, Baokuan Ning and Junxiang Wang, 
{"title":"配水系统中的分区渗漏检测:由时空图卷积网络增强的专业深度学习框架","authors":"Tianwei Mu*,&nbsp;Chunzheng Zhang,&nbsp;Manhong Huang,&nbsp;Baokuan Ning and Junxiang Wang,&nbsp;","doi":"10.1021/acsestwater.4c0028510.1021/acsestwater.4c00285","DOIUrl":null,"url":null,"abstract":"<p >Effective leakage detection is crucial for ensuring operational efficiency, reducing water loss, and maintaining infrastructure integrity in water distribution systems (WDSs). This study presents a specialized leakage detection approach enhanced by spatial–temporal graph convolutional networks (ST-GCN). This method combines large-scale network partition, optimized sensor placement, pilot-scale network partition, and the ST-GCN model, which captures both spatial and temporal dependencies. Then, two case studies are employed to evaluate the effectiveness of this method. The model achieved an average accuracy, precision, recall, and <i>F</i>1-score of 98.38, 98.89, 97.95, and 98.41% across multiple tests for Network A and of 98.51, 98.51, 98.56, and 98.53% for Network B, respectively, which demonstrate the model’s high performance. Furthermore, it compares the model’s simulation results with three existing methods. The enhanced ST-GCN model is superior to those of the other models in terms of accuracy, confirming its superior effectiveness in detecting leakages.</p>","PeriodicalId":93847,"journal":{"name":"ACS ES&T water","volume":"4 8","pages":"3453–3463 3453–3463"},"PeriodicalIF":4.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partitioning Leakage Detection in Water Distribution Systems: A Specialized Deep Learning Framework Enhanced by Spatial–Temporal Graph Convolutional Networks\",\"authors\":\"Tianwei Mu*,&nbsp;Chunzheng Zhang,&nbsp;Manhong Huang,&nbsp;Baokuan Ning and Junxiang Wang,&nbsp;\",\"doi\":\"10.1021/acsestwater.4c0028510.1021/acsestwater.4c00285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Effective leakage detection is crucial for ensuring operational efficiency, reducing water loss, and maintaining infrastructure integrity in water distribution systems (WDSs). This study presents a specialized leakage detection approach enhanced by spatial–temporal graph convolutional networks (ST-GCN). This method combines large-scale network partition, optimized sensor placement, pilot-scale network partition, and the ST-GCN model, which captures both spatial and temporal dependencies. Then, two case studies are employed to evaluate the effectiveness of this method. The model achieved an average accuracy, precision, recall, and <i>F</i>1-score of 98.38, 98.89, 97.95, and 98.41% across multiple tests for Network A and of 98.51, 98.51, 98.56, and 98.53% for Network B, respectively, which demonstrate the model’s high performance. Furthermore, it compares the model’s simulation results with three existing methods. The enhanced ST-GCN model is superior to those of the other models in terms of accuracy, confirming its superior effectiveness in detecting leakages.</p>\",\"PeriodicalId\":93847,\"journal\":{\"name\":\"ACS ES&T water\",\"volume\":\"4 8\",\"pages\":\"3453–3463 3453–3463\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsestwater.4c00285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T water","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestwater.4c00285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

有效的渗漏检测对于确保配水系统(WDS)的运行效率、减少水量损失和维护基础设施完整性至关重要。本研究提出了一种由时空图卷积网络(ST-GCN)增强的专门漏水检测方法。该方法结合了大规模网络分区、优化传感器布置、试验规模网络分区和 ST-GCN 模型,后者可捕捉空间和时间依赖关系。然后,通过两个案例研究来评估该方法的有效性。该模型在多次测试中的平均准确率、精确率、召回率和 F1 分数分别达到了 98.38%、98.89%、97.95% 和 98.41%,在网络 A 和网络 B 中分别达到了 98.51%、98.51%、98.56% 和 98.53%,证明了该模型的高性能。此外,它还将模型的模拟结果与三种现有方法进行了比较。就准确性而言,增强型 ST-GCN 模型优于其他模型,证实了其在检测泄漏方面的卓越功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Partitioning Leakage Detection in Water Distribution Systems: A Specialized Deep Learning Framework Enhanced by Spatial–Temporal Graph Convolutional Networks

Effective leakage detection is crucial for ensuring operational efficiency, reducing water loss, and maintaining infrastructure integrity in water distribution systems (WDSs). This study presents a specialized leakage detection approach enhanced by spatial–temporal graph convolutional networks (ST-GCN). This method combines large-scale network partition, optimized sensor placement, pilot-scale network partition, and the ST-GCN model, which captures both spatial and temporal dependencies. Then, two case studies are employed to evaluate the effectiveness of this method. The model achieved an average accuracy, precision, recall, and F1-score of 98.38, 98.89, 97.95, and 98.41% across multiple tests for Network A and of 98.51, 98.51, 98.56, and 98.53% for Network B, respectively, which demonstrate the model’s high performance. Furthermore, it compares the model’s simulation results with three existing methods. The enhanced ST-GCN model is superior to those of the other models in terms of accuracy, confirming its superior effectiveness in detecting leakages.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
期刊最新文献
Issue Editorial Masthead Issue Publication Information ACS ES&T Water Presents the 2023 Excellence in Review Awards Advancing Sustainable Water Quality Monitoring and Remediation in Malaysia: Innovative Analytical Solutions for Detecting and Removing Emerging Contaminants Correction to “Sorption Behavior of Trace Organic Chemicals on Carboxylated Polystyrene Nanoplastics”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1