介质放大合成作为可可豆幼苗镉吸收抑制剂的纳米镁石

IF 4.8 Q1 AGRICULTURE, MULTIDISCIPLINARY Journal of Agriculture and Food Research Pub Date : 2024-07-23 DOI:10.1016/j.jafr.2024.101295
{"title":"介质放大合成作为可可豆幼苗镉吸收抑制剂的纳米镁石","authors":"","doi":"10.1016/j.jafr.2024.101295","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this research was to show that the absorption of divalent cadmium ions (Cd<sup>2+</sup>) in <em>Theobroma cacao</em> L. seedlings can be controlled and adjusted by remediation with maghemite (γ-Fe<sub>2</sub>O<sub>3</sub>) nanoparticles (NPs), i.e., leading to the low tolerance limits established by the European Union (EU) in 2014 for Cd in products made from cocoa. The research had two stages; the first one involved the medium scale synthesis of 92 g of 15 nm γ-Fe<sub>2</sub>O<sub>3</sub> NPs via room temperature chemical co-precipitation of ferrous salts and their characterizations using diverse physicochemical techniques. In the second stage, and for the first time, three doses of these γ-Fe<sub>2</sub>O<sub>3</sub> NPs (1, 2, and 4 g) were applied to the substrate of cocoa seedlings of genotypes ICS 39, ICS 95, and CCN 51 for three months of exposure. A morphological analysis revealed non-significant toxic effects on the seedlings’ height, leaf area, and stem diameter among the genotypes and tested doses. The results of the atomic absorption analysis of the treatment with 4 g of γ-Fe<sub>2</sub>O<sub>3</sub> NPs showed a concentration of 0.10 mg kg<sup>−1</sup> of Cd<sup>2+</sup>, a limit lower than the control and the recommended value by the 2014 EU regulation. Thus, the transport and/or absorption of the Cd<sup>2+</sup> toxic metal were significantly inhibited, since up to 74 % of Cd<sup>2+</sup> uptake in the genotype ICS 95 was experimentally observed. Also, the environmental Fe-dynamics in the seedlings and soils demonstrated no transport of γ-Fe<sub>2</sub>O<sub>3</sub> NPs to the seedlings. Thus, the study found that the Cd<sup>2+</sup> adsorption in remediated soil using γ-Fe<sub>2</sub>O<sub>3</sub> NPs involves three steps: electrostatic exchange, Fe-oxide adsorption, and substrate-γ-Fe<sub>2</sub>O<sub>3</sub> NPs complexation and precipitation.</p></div>","PeriodicalId":34393,"journal":{"name":"Journal of Agriculture and Food Research","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666154324003326/pdfft?md5=17ad6b74bf3ebc01bc33410951cdeb57&pid=1-s2.0-S2666154324003326-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Medium scale-up synthesis of nanomaghemite as an inhibitor of cadmium uptake in seedlings of Theobroma cacao L\",\"authors\":\"\",\"doi\":\"10.1016/j.jafr.2024.101295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this research was to show that the absorption of divalent cadmium ions (Cd<sup>2+</sup>) in <em>Theobroma cacao</em> L. seedlings can be controlled and adjusted by remediation with maghemite (γ-Fe<sub>2</sub>O<sub>3</sub>) nanoparticles (NPs), i.e., leading to the low tolerance limits established by the European Union (EU) in 2014 for Cd in products made from cocoa. The research had two stages; the first one involved the medium scale synthesis of 92 g of 15 nm γ-Fe<sub>2</sub>O<sub>3</sub> NPs via room temperature chemical co-precipitation of ferrous salts and their characterizations using diverse physicochemical techniques. In the second stage, and for the first time, three doses of these γ-Fe<sub>2</sub>O<sub>3</sub> NPs (1, 2, and 4 g) were applied to the substrate of cocoa seedlings of genotypes ICS 39, ICS 95, and CCN 51 for three months of exposure. A morphological analysis revealed non-significant toxic effects on the seedlings’ height, leaf area, and stem diameter among the genotypes and tested doses. The results of the atomic absorption analysis of the treatment with 4 g of γ-Fe<sub>2</sub>O<sub>3</sub> NPs showed a concentration of 0.10 mg kg<sup>−1</sup> of Cd<sup>2+</sup>, a limit lower than the control and the recommended value by the 2014 EU regulation. Thus, the transport and/or absorption of the Cd<sup>2+</sup> toxic metal were significantly inhibited, since up to 74 % of Cd<sup>2+</sup> uptake in the genotype ICS 95 was experimentally observed. Also, the environmental Fe-dynamics in the seedlings and soils demonstrated no transport of γ-Fe<sub>2</sub>O<sub>3</sub> NPs to the seedlings. Thus, the study found that the Cd<sup>2+</sup> adsorption in remediated soil using γ-Fe<sub>2</sub>O<sub>3</sub> NPs involves three steps: electrostatic exchange, Fe-oxide adsorption, and substrate-γ-Fe<sub>2</sub>O<sub>3</sub> NPs complexation and precipitation.</p></div>\",\"PeriodicalId\":34393,\"journal\":{\"name\":\"Journal of Agriculture and Food Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666154324003326/pdfft?md5=17ad6b74bf3ebc01bc33410951cdeb57&pid=1-s2.0-S2666154324003326-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agriculture and Food Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666154324003326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agriculture and Food Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666154324003326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是证明可可树幼苗对二价镉离子(Cd2+)的吸收可以通过使用镁锰矿(γ-Fe2O3)纳米粒子(NPs)进行修复来控制和调节,即达到欧盟(EU)于2014年规定的可可制品中镉的低容忍限值。该研究分为两个阶段:第一阶段是通过亚铁盐的室温化学共沉淀法,中等规模合成 92 克 15 纳米的 γ-Fe2O3 NPs,并使用多种物理化学技术对其进行表征。在第二阶段,首次将三种剂量的 γ-Fe2O3 NPs(1 克、2 克和 4 克)施用于基因型为 ICS 39、ICS 95 和 CCN 51 的可可秧苗的基质上,暴露三个月。形态分析表明,不同基因型和测试剂量的可可对秧苗的高度、叶面积和茎直径的毒性影响不显著。对 4 克γ-Fe2O3 NPs 的原子吸收分析结果显示,Cd2+ 的浓度为 0.10 mg kg-1,低于对照组和 2014 年欧盟法规的建议值。因此,Cd2+ 有毒金属的运输和/或吸收受到了显著抑制,因为实验观察到基因型 ICS 95 对 Cd2+ 的吸收率高达 74%。此外,秧苗和土壤中的环境铁动力学也表明,γ-Fe2O3 NPs 没有向秧苗迁移。因此,该研究发现,利用γ-Fe2O3 NPs 在修复土壤中吸附 Cd2+ 包括三个步骤:静电交换、Fe-氧化物吸附以及基质-γ-Fe2O3 NPs 复合和沉淀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Medium scale-up synthesis of nanomaghemite as an inhibitor of cadmium uptake in seedlings of Theobroma cacao L

The aim of this research was to show that the absorption of divalent cadmium ions (Cd2+) in Theobroma cacao L. seedlings can be controlled and adjusted by remediation with maghemite (γ-Fe2O3) nanoparticles (NPs), i.e., leading to the low tolerance limits established by the European Union (EU) in 2014 for Cd in products made from cocoa. The research had two stages; the first one involved the medium scale synthesis of 92 g of 15 nm γ-Fe2O3 NPs via room temperature chemical co-precipitation of ferrous salts and their characterizations using diverse physicochemical techniques. In the second stage, and for the first time, three doses of these γ-Fe2O3 NPs (1, 2, and 4 g) were applied to the substrate of cocoa seedlings of genotypes ICS 39, ICS 95, and CCN 51 for three months of exposure. A morphological analysis revealed non-significant toxic effects on the seedlings’ height, leaf area, and stem diameter among the genotypes and tested doses. The results of the atomic absorption analysis of the treatment with 4 g of γ-Fe2O3 NPs showed a concentration of 0.10 mg kg−1 of Cd2+, a limit lower than the control and the recommended value by the 2014 EU regulation. Thus, the transport and/or absorption of the Cd2+ toxic metal were significantly inhibited, since up to 74 % of Cd2+ uptake in the genotype ICS 95 was experimentally observed. Also, the environmental Fe-dynamics in the seedlings and soils demonstrated no transport of γ-Fe2O3 NPs to the seedlings. Thus, the study found that the Cd2+ adsorption in remediated soil using γ-Fe2O3 NPs involves three steps: electrostatic exchange, Fe-oxide adsorption, and substrate-γ-Fe2O3 NPs complexation and precipitation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
2.60%
发文量
193
审稿时长
69 days
期刊最新文献
Revolutionizing cell-based protein: Innovations, market dynamics, and future prospects in the cultivated meat industry The effect of Lactiplantibacillus plantarum fermentation and blanching on microbial population, nutrients, anti-nutrients and antioxidant properties of fresh and dried mature Moringa oleifera leaves Identification of novel functional compounds from forest onion and its biological activities against breast cancer Impact of village savings and loans associations participation on cocoa farmers’ livelihood in the Western North Region, Ghana Numerical optimization of drying of white button mushroom (Agaricus bisporus) employing microwave and fluidized bed drying for preparing value added product
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1