{"title":"ScaRLib:面向聚合计算和多代理强化学习的混合工具链","authors":"D. Domini, F. Cavallari, G. Aguzzi, M. Viroli","doi":"10.1016/j.scico.2024.103176","DOIUrl":null,"url":null,"abstract":"<div><p>This article introduces ScaRLib, a Scala-based framework that aims to streamline the development cyber-physical swarms scenarios (i.e., systems of many interacting distributed devices that collectively accomplish system-wide tasks) by integrating macroprogramming and multi-agent reinforcement learning to design collective behavior. This framework serves as the starting point for a broader toolchain that will integrate these two approaches at multiple points to harness the capabilities of both, enabling the expression of complex and adaptive collective behavior.</p></div>","PeriodicalId":49561,"journal":{"name":"Science of Computer Programming","volume":"238 ","pages":"Article 103176"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ScaRLib: Towards a hybrid toolchain for aggregate computing and many-agent reinforcement learning\",\"authors\":\"D. Domini, F. Cavallari, G. Aguzzi, M. Viroli\",\"doi\":\"10.1016/j.scico.2024.103176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article introduces ScaRLib, a Scala-based framework that aims to streamline the development cyber-physical swarms scenarios (i.e., systems of many interacting distributed devices that collectively accomplish system-wide tasks) by integrating macroprogramming and multi-agent reinforcement learning to design collective behavior. This framework serves as the starting point for a broader toolchain that will integrate these two approaches at multiple points to harness the capabilities of both, enabling the expression of complex and adaptive collective behavior.</p></div>\",\"PeriodicalId\":49561,\"journal\":{\"name\":\"Science of Computer Programming\",\"volume\":\"238 \",\"pages\":\"Article 103176\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Computer Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167642324000996\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Computer Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167642324000996","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
ScaRLib: Towards a hybrid toolchain for aggregate computing and many-agent reinforcement learning
This article introduces ScaRLib, a Scala-based framework that aims to streamline the development cyber-physical swarms scenarios (i.e., systems of many interacting distributed devices that collectively accomplish system-wide tasks) by integrating macroprogramming and multi-agent reinforcement learning to design collective behavior. This framework serves as the starting point for a broader toolchain that will integrate these two approaches at multiple points to harness the capabilities of both, enabling the expression of complex and adaptive collective behavior.
期刊介绍:
Science of Computer Programming is dedicated to the distribution of research results in the areas of software systems development, use and maintenance, including the software aspects of hardware design.
The journal has a wide scope ranging from the many facets of methodological foundations to the details of technical issues andthe aspects of industrial practice.
The subjects of interest to SCP cover the entire spectrum of methods for the entire life cycle of software systems, including
• Requirements, specification, design, validation, verification, coding, testing, maintenance, metrics and renovation of software;
• Design, implementation and evaluation of programming languages;
• Programming environments, development tools, visualisation and animation;
• Management of the development process;
• Human factors in software, software for social interaction, software for social computing;
• Cyber physical systems, and software for the interaction between the physical and the machine;
• Software aspects of infrastructure services, system administration, and network management.