薄膜传感器用于数据驱动的杯后挤压同心度预测

IF 3.2 3区 工程技术 Q2 ENGINEERING, INDUSTRIAL Cirp Annals-Manufacturing Technology Pub Date : 2024-01-01 DOI:10.1016/j.cirp.2024.04.035
M. Rekowski , K.C. Grötzinger , A. Schott , M. Liewald (2)
{"title":"薄膜传感器用于数据驱动的杯后挤压同心度预测","authors":"M. Rekowski ,&nbsp;K.C. Grötzinger ,&nbsp;A. Schott ,&nbsp;M. Liewald (2)","doi":"10.1016/j.cirp.2024.04.035","DOIUrl":null,"url":null,"abstract":"<div><p>The manufacture of precise metal components by cold forging poses serious challenges to the process reliability under unstable process conditions. The detection of geometrical imperfections, such as concentricity deviations, is necessary for the operator to adjust the forging tool rack properly. In this paper, a novel piezoelectric thin-film sensor disc is introduced to detect such concentricity deviations based on the measurement of eccentric load, that is arising from elastic punch deformation. Experimental results showed, that the concentricity deviation of the produced parts efficiently can be predicted by processing measured force data using a support vector regression algorithm.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 1","pages":"Pages 205-208"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0007850624000490/pdfft?md5=24ed88063a5f4160a02aa81a7a3e9ccd&pid=1-s2.0-S0007850624000490-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Thin-film sensors for data-driven concentricity prediction in cup backward extrusion\",\"authors\":\"M. Rekowski ,&nbsp;K.C. Grötzinger ,&nbsp;A. Schott ,&nbsp;M. Liewald (2)\",\"doi\":\"10.1016/j.cirp.2024.04.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The manufacture of precise metal components by cold forging poses serious challenges to the process reliability under unstable process conditions. The detection of geometrical imperfections, such as concentricity deviations, is necessary for the operator to adjust the forging tool rack properly. In this paper, a novel piezoelectric thin-film sensor disc is introduced to detect such concentricity deviations based on the measurement of eccentric load, that is arising from elastic punch deformation. Experimental results showed, that the concentricity deviation of the produced parts efficiently can be predicted by processing measured force data using a support vector regression algorithm.</p></div>\",\"PeriodicalId\":55256,\"journal\":{\"name\":\"Cirp Annals-Manufacturing Technology\",\"volume\":\"73 1\",\"pages\":\"Pages 205-208\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0007850624000490/pdfft?md5=24ed88063a5f4160a02aa81a7a3e9ccd&pid=1-s2.0-S0007850624000490-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cirp Annals-Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007850624000490\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850624000490","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

在不稳定的工艺条件下,通过冷锻制造精密金属部件对工艺可靠性提出了严峻的挑战。对同心度偏差等几何缺陷的检测是操作员正确调整锻造工具架的必要条件。本文介绍了一种新型压电薄膜传感器盘,它可根据偏心载荷(由弹性冲头变形产生)的测量来检测此类同心度偏差。实验结果表明,通过使用支持向量回归算法处理测得的力数据,可以有效地预测所生产零件的同心度偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thin-film sensors for data-driven concentricity prediction in cup backward extrusion

The manufacture of precise metal components by cold forging poses serious challenges to the process reliability under unstable process conditions. The detection of geometrical imperfections, such as concentricity deviations, is necessary for the operator to adjust the forging tool rack properly. In this paper, a novel piezoelectric thin-film sensor disc is introduced to detect such concentricity deviations based on the measurement of eccentric load, that is arising from elastic punch deformation. Experimental results showed, that the concentricity deviation of the produced parts efficiently can be predicted by processing measured force data using a support vector regression algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cirp Annals-Manufacturing Technology
Cirp Annals-Manufacturing Technology 工程技术-工程:工业
CiteScore
7.50
自引率
9.80%
发文量
137
审稿时长
13.5 months
期刊介绍: CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems. This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include: Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.
期刊最新文献
Interfacial characteristics in multi-material laser powder bed fusion of CuZr/316L stainless steel Dynamic characterization and control of a back-support exoskeleton 3D-printed cycloidal actuator Throughput scaling and thermomechanical behaviour in multiplexed fused filament fabrication Generative AI and neural networks towards advanced robot cognition Precision optimized process design for highly repeatable handling with articulated industrial robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1