利用主动采样在组织病理学中进行数据高效对比学习

Tahsin Reasat , Asif Sushmit , David S. Smith
{"title":"利用主动采样在组织病理学中进行数据高效对比学习","authors":"Tahsin Reasat ,&nbsp;Asif Sushmit ,&nbsp;David S. Smith","doi":"10.1016/j.mlwa.2024.100577","DOIUrl":null,"url":null,"abstract":"<div><p>Deep learning (DL) based diagnostics systems can provide accurate and robust quantitative analysis in digital pathology. These algorithms require large amounts of annotated training data which is impractical in pathology due to the high resolution of histopathological images. Hence, self-supervised methods have been proposed to learn features using ad-hoc pretext tasks. The self-supervised training process uses a large unlabeled dataset which makes the learning process time consuming. In this work, we propose a new method for actively sampling informative members from the training set using a small proxy network, decreasing sample requirement by 93% and training time by 62% while maintaining the same performance of the traditional self-supervised learning method. The code is available on <span><span>github</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"17 ","pages":"Article 100577"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666827024000537/pdfft?md5=3a2df5b10799802c10eef16a87edcda2&pid=1-s2.0-S2666827024000537-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Data efficient contrastive learning in histopathology using active sampling\",\"authors\":\"Tahsin Reasat ,&nbsp;Asif Sushmit ,&nbsp;David S. Smith\",\"doi\":\"10.1016/j.mlwa.2024.100577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deep learning (DL) based diagnostics systems can provide accurate and robust quantitative analysis in digital pathology. These algorithms require large amounts of annotated training data which is impractical in pathology due to the high resolution of histopathological images. Hence, self-supervised methods have been proposed to learn features using ad-hoc pretext tasks. The self-supervised training process uses a large unlabeled dataset which makes the learning process time consuming. In this work, we propose a new method for actively sampling informative members from the training set using a small proxy network, decreasing sample requirement by 93% and training time by 62% while maintaining the same performance of the traditional self-supervised learning method. The code is available on <span><span>github</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":74093,\"journal\":{\"name\":\"Machine learning with applications\",\"volume\":\"17 \",\"pages\":\"Article 100577\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666827024000537/pdfft?md5=3a2df5b10799802c10eef16a87edcda2&pid=1-s2.0-S2666827024000537-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning with applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666827024000537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827024000537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于深度学习(DL)的诊断系统可在数字病理学中提供准确、稳健的定量分析。这些算法需要大量有注释的训练数据,而由于组织病理学图像的高分辨率,这在病理学中是不切实际的。因此,有人提出了利用临时借口任务学习特征的自监督方法。自我监督训练过程使用大量未标记的数据集,这使得学习过程非常耗时。在这项工作中,我们提出了一种利用小型代理网络从训练集中主动抽取信息成员的新方法,在保持与传统自我监督学习方法相同性能的同时,将样本要求降低了 93%,将训练时间缩短了 62%。代码可在 github 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data efficient contrastive learning in histopathology using active sampling

Deep learning (DL) based diagnostics systems can provide accurate and robust quantitative analysis in digital pathology. These algorithms require large amounts of annotated training data which is impractical in pathology due to the high resolution of histopathological images. Hence, self-supervised methods have been proposed to learn features using ad-hoc pretext tasks. The self-supervised training process uses a large unlabeled dataset which makes the learning process time consuming. In this work, we propose a new method for actively sampling informative members from the training set using a small proxy network, decreasing sample requirement by 93% and training time by 62% while maintaining the same performance of the traditional self-supervised learning method. The code is available on github.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
期刊最新文献
Document Layout Error Rate (DLER) metric to evaluate image segmentation methods Supervised machine learning for microbiomics: Bridging the gap between current and best practices Playing with words: Comparing the vocabulary and lexical diversity of ChatGPT and humans A survey on knowledge distillation: Recent advancements Texas rural land market integration: A causal analysis using machine learning applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1