通过 GFP 纳米抗体介导的降解,特异性敲除组织中的 OMM 蛋白

Xiaojie Wang , Qiyue Zhang , Suhong Xu
{"title":"通过 GFP 纳米抗体介导的降解,特异性敲除组织中的 OMM 蛋白","authors":"Xiaojie Wang ,&nbsp;Qiyue Zhang ,&nbsp;Suhong Xu","doi":"10.1016/j.mitoco.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>Mitochondria, with their diverse morphologies across tissues, hint at a unique function based on location. For instance, outer mitochondrial membrane (OMM) proteins are critical for various mitochondrial activities, including regulating mitochondrial dynamics, ion homeostasis, and protein translocation. This study introduces a green fluorescent protein (GFP) nanobody-mediated protein degradation (G-DEG) system to investigate tissue-specific mitochondrial functions in <em>Caenorhabditis elegans</em> and potential other model systems. G-DEG combines CRISPR-Cas9 GFP knock-in with ZIF-1-mediated protein degradation, leveraging the high specificity of antigen–antibody recognition for precise manipulation across species. We demonstrate the G-DEG system by targeting FZO-1, a mammalian homolog of MAN1/2, which is essential for mitochondrial fusion. Our protocol includes CRISPR-Cas9-mediated <em>fzo-1</em>:GFP knock-in and the construction of tissue-specific GFP nanobody degradation plasmids for the epidermis, muscle, and neurons. Injection of these plasmids into wild-type <em>C. elegans</em> and subsequent crossbreeding with the <em>fzo-1</em>:GFP knock-in strain allows for effective FZO-1 targeting, providing tissue-specific insights into mitochondrial protein function. Overall, G-DEG emerges as a powerful and versatile tool for tissue-specific knockdown of OMM proteins, paving the way for advanced studies on their diverse biological functions.</p></div>","PeriodicalId":100931,"journal":{"name":"Mitochondrial Communications","volume":"2 ","pages":"Pages 85-89"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590279224000087/pdfft?md5=f5d2d52b3e5d9bb6460686031c07f0e6&pid=1-s2.0-S2590279224000087-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Tissue-specific knockdown of OMM protein via GFP nanobody-mediated degradation\",\"authors\":\"Xiaojie Wang ,&nbsp;Qiyue Zhang ,&nbsp;Suhong Xu\",\"doi\":\"10.1016/j.mitoco.2024.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mitochondria, with their diverse morphologies across tissues, hint at a unique function based on location. For instance, outer mitochondrial membrane (OMM) proteins are critical for various mitochondrial activities, including regulating mitochondrial dynamics, ion homeostasis, and protein translocation. This study introduces a green fluorescent protein (GFP) nanobody-mediated protein degradation (G-DEG) system to investigate tissue-specific mitochondrial functions in <em>Caenorhabditis elegans</em> and potential other model systems. G-DEG combines CRISPR-Cas9 GFP knock-in with ZIF-1-mediated protein degradation, leveraging the high specificity of antigen–antibody recognition for precise manipulation across species. We demonstrate the G-DEG system by targeting FZO-1, a mammalian homolog of MAN1/2, which is essential for mitochondrial fusion. Our protocol includes CRISPR-Cas9-mediated <em>fzo-1</em>:GFP knock-in and the construction of tissue-specific GFP nanobody degradation plasmids for the epidermis, muscle, and neurons. Injection of these plasmids into wild-type <em>C. elegans</em> and subsequent crossbreeding with the <em>fzo-1</em>:GFP knock-in strain allows for effective FZO-1 targeting, providing tissue-specific insights into mitochondrial protein function. Overall, G-DEG emerges as a powerful and versatile tool for tissue-specific knockdown of OMM proteins, paving the way for advanced studies on their diverse biological functions.</p></div>\",\"PeriodicalId\":100931,\"journal\":{\"name\":\"Mitochondrial Communications\",\"volume\":\"2 \",\"pages\":\"Pages 85-89\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590279224000087/pdfft?md5=f5d2d52b3e5d9bb6460686031c07f0e6&pid=1-s2.0-S2590279224000087-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mitochondrial Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590279224000087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrial Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590279224000087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

线粒体在不同组织中的形态各异,暗示着不同位置的线粒体具有独特的功能。例如,线粒体外膜(OMM)蛋白对线粒体的各种活动至关重要,包括调节线粒体动力学、离子平衡和蛋白质转运。本研究介绍了一种绿色荧光蛋白(GFP)纳米抗体介导的蛋白质降解(G-DEG)系统,用于研究线粒体在秀丽隐杆线虫和其他潜在模型系统中的组织特异性功能。G-DEG 将 CRISPR-Cas9 GFP 基因敲入与 ZIF-1 介导的蛋白降解相结合,利用抗原-抗体识别的高度特异性进行跨物种精确操作。我们通过靶向 FZO-1 演示了 G-DEG 系统,FZO-1 是哺乳动物 MAN1/2 的同源物,对线粒体融合至关重要。我们的方案包括 CRISPR-Cas9 介导的 fzo-1:GFP 基因敲入,以及为表皮、肌肉和神经元构建组织特异性 GFP 纳米抗体降解质粒。将这些质粒注射到野生型秀丽隐杆线虫中,然后与 fzo-1:GFP 基因敲入株杂交,就能实现有效的 FZO-1 靶向,从而提供线粒体蛋白功能的组织特异性洞察。总之,G-DEG 是组织特异性敲除 OMM 蛋白的一种功能强大、用途广泛的工具,为深入研究它们的各种生物功能铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tissue-specific knockdown of OMM protein via GFP nanobody-mediated degradation

Mitochondria, with their diverse morphologies across tissues, hint at a unique function based on location. For instance, outer mitochondrial membrane (OMM) proteins are critical for various mitochondrial activities, including regulating mitochondrial dynamics, ion homeostasis, and protein translocation. This study introduces a green fluorescent protein (GFP) nanobody-mediated protein degradation (G-DEG) system to investigate tissue-specific mitochondrial functions in Caenorhabditis elegans and potential other model systems. G-DEG combines CRISPR-Cas9 GFP knock-in with ZIF-1-mediated protein degradation, leveraging the high specificity of antigen–antibody recognition for precise manipulation across species. We demonstrate the G-DEG system by targeting FZO-1, a mammalian homolog of MAN1/2, which is essential for mitochondrial fusion. Our protocol includes CRISPR-Cas9-mediated fzo-1:GFP knock-in and the construction of tissue-specific GFP nanobody degradation plasmids for the epidermis, muscle, and neurons. Injection of these plasmids into wild-type C. elegans and subsequent crossbreeding with the fzo-1:GFP knock-in strain allows for effective FZO-1 targeting, providing tissue-specific insights into mitochondrial protein function. Overall, G-DEG emerges as a powerful and versatile tool for tissue-specific knockdown of OMM proteins, paving the way for advanced studies on their diverse biological functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural determinants of mitochondrial STAT3 targeting and function Mitochondrial calcium transport during autophagy initiation Photobleaching and phototoxicity of mitochondria in live cell fluorescent super-resolution microscopy Antioxidants targeting mitochondria function in kidney diseases Is localized chemiosmosis necessary in mitochondria? Is Lee's TELP protonic capacitor hypothesis a reasonable model?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1