通过提示工程在大型语言模型中整合化学知识

IF 4.4 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Synthetic and Systems Biotechnology Pub Date : 2024-07-24 DOI:10.1016/j.synbio.2024.07.004
Hongxuan Liu , Haoyu Yin , Zhiyao Luo , Xiaonan Wang
{"title":"通过提示工程在大型语言模型中整合化学知识","authors":"Hongxuan Liu ,&nbsp;Haoyu Yin ,&nbsp;Zhiyao Luo ,&nbsp;Xiaonan Wang","doi":"10.1016/j.synbio.2024.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a study on the integration of domain-specific knowledge in prompt engineering to enhance the performance of large language models (LLMs) in scientific domains. The proposed domain-knowledge embedded prompt engineering method outperforms traditional prompt engineering strategies on various metrics, including capability, accuracy, F1 score, and hallucination drop. The effectiveness of the method is demonstrated through case studies on complex materials including the MacMillan catalyst, paclitaxel, and lithium cobalt oxide. The results suggest that domain-knowledge prompts can guide LLMs to generate more accurate and relevant responses, highlighting the potential of LLMs as powerful tools for scientific discovery and innovation when equipped with domain-specific prompts. The study also discusses limitations and future directions for domain-specific prompt engineering development.</p></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"10 1","pages":"Pages 23-38"},"PeriodicalIF":4.4000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405805X24001029/pdfft?md5=dd4b0bce2ec7b1ef7c85fdaea00ca13c&pid=1-s2.0-S2405805X24001029-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Integrating chemistry knowledge in large language models via prompt engineering\",\"authors\":\"Hongxuan Liu ,&nbsp;Haoyu Yin ,&nbsp;Zhiyao Luo ,&nbsp;Xiaonan Wang\",\"doi\":\"10.1016/j.synbio.2024.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a study on the integration of domain-specific knowledge in prompt engineering to enhance the performance of large language models (LLMs) in scientific domains. The proposed domain-knowledge embedded prompt engineering method outperforms traditional prompt engineering strategies on various metrics, including capability, accuracy, F1 score, and hallucination drop. The effectiveness of the method is demonstrated through case studies on complex materials including the MacMillan catalyst, paclitaxel, and lithium cobalt oxide. The results suggest that domain-knowledge prompts can guide LLMs to generate more accurate and relevant responses, highlighting the potential of LLMs as powerful tools for scientific discovery and innovation when equipped with domain-specific prompts. The study also discusses limitations and future directions for domain-specific prompt engineering development.</p></div>\",\"PeriodicalId\":22148,\"journal\":{\"name\":\"Synthetic and Systems Biotechnology\",\"volume\":\"10 1\",\"pages\":\"Pages 23-38\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405805X24001029/pdfft?md5=dd4b0bce2ec7b1ef7c85fdaea00ca13c&pid=1-s2.0-S2405805X24001029-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic and Systems Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405805X24001029\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X24001029","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一项关于在提示工程中整合特定领域知识以提高科学领域大型语言模型(LLM)性能的研究。所提出的嵌入领域知识的提示工程方法在各种指标上都优于传统的提示工程策略,包括能力、准确性、F1 分数和幻觉下降。通过对麦克米伦催化剂、紫杉醇和钴酸锂等复杂材料的案例研究,证明了该方法的有效性。研究结果表明,领域知识提示可以引导 LLM 生成更准确、更相关的回答,突出了 LLM 在配备特定领域提示后作为科学发现和创新的强大工具的潜力。研究还讨论了特定领域提示工程开发的局限性和未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating chemistry knowledge in large language models via prompt engineering

This paper presents a study on the integration of domain-specific knowledge in prompt engineering to enhance the performance of large language models (LLMs) in scientific domains. The proposed domain-knowledge embedded prompt engineering method outperforms traditional prompt engineering strategies on various metrics, including capability, accuracy, F1 score, and hallucination drop. The effectiveness of the method is demonstrated through case studies on complex materials including the MacMillan catalyst, paclitaxel, and lithium cobalt oxide. The results suggest that domain-knowledge prompts can guide LLMs to generate more accurate and relevant responses, highlighting the potential of LLMs as powerful tools for scientific discovery and innovation when equipped with domain-specific prompts. The study also discusses limitations and future directions for domain-specific prompt engineering development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Synthetic and Systems Biotechnology
Synthetic and Systems Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
6.90
自引率
12.50%
发文量
90
审稿时长
67 days
期刊介绍: Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.
期刊最新文献
Semi-rational design and modification of phosphoketolase to improve the yield of tyrosol in Saccharomyces cerevisiae Pathway and protein channel engineering of Bacillus subtilis for improved production of desthiobiotin and biotin Harnessing microbial heterogeneity for improved biosynthesis fueled by synthetic biology Recent advances in the biosynthesis and production optimization of gentamicin: A critical review Coordinated regulation of two LacI family regulators, GvmR and GvmR2, on guvermectin production in Streptomyces caniferus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1