基于电流灵敏度的主动配电网 OPF 框架

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Electrical Power & Energy Systems Pub Date : 2024-08-08 DOI:10.1016/j.ijepes.2024.110150
{"title":"基于电流灵敏度的主动配电网 OPF 框架","authors":"","doi":"10.1016/j.ijepes.2024.110150","DOIUrl":null,"url":null,"abstract":"<div><p>Proliferation of distributed energy resources (DERs) and proactive consumers has mooted over the pre-existing pricing mechanisms for active distribution networks (ADNs). This entails the need for a pricing mechanism in conjunction with cost-effective ADN operations. Locational marginal price (LMP) is a well-established pricing mechanism of the day-ahead wholesale market in most countries and provides economic signals and incentives to market participants. However, the alternating current optimal power flow (ACOPF) model (being non-deterministic polynomial-time hard) has inherent complexities and convergence issues. Besides, the approximations involved in its implementation for transmission networks may not be applicable to ADN due to their technical and structural differences. Hence, a distribution LMP (DLMP) model is indispensable for the evolving ADN. This paper proposes a network-dependent sensitivity-based branch-flow quadratic OPF model for evaluating active and reactive power DLMPs of ADNs. The DLMPs are calculated using the sensitivities and dual variables of the OPF model, which consist of incremental costs for energy, loss, congestion, and voltage components. These signals would offer an equitable price for each DER, accounting for their contribution to network conditions. The efficacy of the proposed model has been elucidated on the 33, 69, 118, and 141-node ADNs, and the results are compared with five state-of-the-art models.</p></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142061524003715/pdfft?md5=b817da1f7aff9bcc7f91896424657027&pid=1-s2.0-S0142061524003715-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Current sensitivity based OPF framework for active distribution network\",\"authors\":\"\",\"doi\":\"10.1016/j.ijepes.2024.110150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Proliferation of distributed energy resources (DERs) and proactive consumers has mooted over the pre-existing pricing mechanisms for active distribution networks (ADNs). This entails the need for a pricing mechanism in conjunction with cost-effective ADN operations. Locational marginal price (LMP) is a well-established pricing mechanism of the day-ahead wholesale market in most countries and provides economic signals and incentives to market participants. However, the alternating current optimal power flow (ACOPF) model (being non-deterministic polynomial-time hard) has inherent complexities and convergence issues. Besides, the approximations involved in its implementation for transmission networks may not be applicable to ADN due to their technical and structural differences. Hence, a distribution LMP (DLMP) model is indispensable for the evolving ADN. This paper proposes a network-dependent sensitivity-based branch-flow quadratic OPF model for evaluating active and reactive power DLMPs of ADNs. The DLMPs are calculated using the sensitivities and dual variables of the OPF model, which consist of incremental costs for energy, loss, congestion, and voltage components. These signals would offer an equitable price for each DER, accounting for their contribution to network conditions. The efficacy of the proposed model has been elucidated on the 33, 69, 118, and 141-node ADNs, and the results are compared with five state-of-the-art models.</p></div>\",\"PeriodicalId\":50326,\"journal\":{\"name\":\"International Journal of Electrical Power & Energy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0142061524003715/pdfft?md5=b817da1f7aff9bcc7f91896424657027&pid=1-s2.0-S0142061524003715-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Power & Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142061524003715\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061524003715","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

分布式能源资源(DER)和积极主动的消费者的激增,使现有的主动配电网(ADN)定价机制受到质疑。这就需要建立一种定价机制,与具有成本效益的 ADN 运营相结合。在大多数国家,当地边际价格(LMP)是一种成熟的日前批发市场定价机制,为市场参与者提供经济信号和激励。然而,交流最优功率流(ACOPF)模型(非确定性多项式时间困难)具有固有的复杂性和收敛性问题。此外,由于技术和结构上的差异,针对输电网络的近似实现可能不适用于 ADN。因此,对于不断发展的 ADN 来说,分布式 LMP(DLMP)模型是必不可少的。本文提出了一种基于网络灵敏度的分支流二次 OPF 模型,用于评估 ADN 的有功和无功功率 DLMP。DLMP 使用 OPF 模型的敏感性和双变量计算,其中包括能量、损耗、拥塞和电压成分的增量成本。这些信号将为每个 DER 提供公平的价格,同时考虑到它们对网络条件的贡献。已在 33、69、118 和 141 节点 ADN 上阐明了所提模型的功效,并将结果与五种最先进的模型进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Current sensitivity based OPF framework for active distribution network

Proliferation of distributed energy resources (DERs) and proactive consumers has mooted over the pre-existing pricing mechanisms for active distribution networks (ADNs). This entails the need for a pricing mechanism in conjunction with cost-effective ADN operations. Locational marginal price (LMP) is a well-established pricing mechanism of the day-ahead wholesale market in most countries and provides economic signals and incentives to market participants. However, the alternating current optimal power flow (ACOPF) model (being non-deterministic polynomial-time hard) has inherent complexities and convergence issues. Besides, the approximations involved in its implementation for transmission networks may not be applicable to ADN due to their technical and structural differences. Hence, a distribution LMP (DLMP) model is indispensable for the evolving ADN. This paper proposes a network-dependent sensitivity-based branch-flow quadratic OPF model for evaluating active and reactive power DLMPs of ADNs. The DLMPs are calculated using the sensitivities and dual variables of the OPF model, which consist of incremental costs for energy, loss, congestion, and voltage components. These signals would offer an equitable price for each DER, accounting for their contribution to network conditions. The efficacy of the proposed model has been elucidated on the 33, 69, 118, and 141-node ADNs, and the results are compared with five state-of-the-art models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
期刊最新文献
Adaptive fault nature identification and soft restart criterion for hybrid multiterminal UHVDCs Mode identification-based model-free adaptive predictive damping control method for power system with wind farm considering communication delays Modeling of small-signal stability margin constrained optimal power flow Dynamic electricity theft behavior analysis based on active learning and incremental learning in new power systems Battery energy storage systems providing dynamic containment frequency response service
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1