基于杨氏模量、泊松比和 S 波模量的同步宽带非线性反演对钙质砂岩进行预测

IF 2.2 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Journal of Applied Geophysics Pub Date : 2024-08-06 DOI:10.1016/j.jappgeo.2024.105477
Xuan Zheng , Zhaoyun Zong , Mingyao Wang
{"title":"基于杨氏模量、泊松比和 S 波模量的同步宽带非线性反演对钙质砂岩进行预测","authors":"Xuan Zheng ,&nbsp;Zhaoyun Zong ,&nbsp;Mingyao Wang","doi":"10.1016/j.jappgeo.2024.105477","DOIUrl":null,"url":null,"abstract":"<div><p>The oilfield's further fine development is significantly impacted by the interlayer of calcareous sandstone. Projecting the lateral distribution of subterranean calcareous sandstone is crucial for determining sequence boundary division, reservoir quality, and even CO<sub>2</sub> storage. Research on the sensitive characteristics of calcareous sandstone is still lacking. This study computes the percentage of lithologic difference and performs an intersection analysis of rock physical properties. It is found that Young's impedance, Poisson's ratio, and S-wave modulus have pleasurable sensitivity to distinguish calcareous sandstone. On the basis of this, a new sensitive factor for calcareous sandstone was built. The traditional approximate YPD reflection coefficient equation is only applicable to the weak contrast interface, and the accuracy is limited. This difficulty is solved in this paper by deriving a new equation for the nonlinear reflection coefficient. The equation is expressed by Young's modulus, Poisson's ratio, S-wave modulus, and density. Finally, the broadband nonlinear inversion method is adopted to provide a reasonable low-frequency model for the inversion of parameters. This allows for the realization of a stable inversion of parameters. The simultaneous broadband nonlinear inversion of Young's modulus, Poisson's ratio, and S-wave modulus provides a novel approach for calcareous sandstone prediction. We tested the accuracy and rationality of the method with both synthetic and field data examples.</p></div>","PeriodicalId":54882,"journal":{"name":"Journal of Applied Geophysics","volume":"229 ","pages":"Article 105477"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of calcareous sandstone based on simultaneous broadband nonlinear inversion of Young's modulus, Poisson's ratio and S-wave modulus\",\"authors\":\"Xuan Zheng ,&nbsp;Zhaoyun Zong ,&nbsp;Mingyao Wang\",\"doi\":\"10.1016/j.jappgeo.2024.105477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The oilfield's further fine development is significantly impacted by the interlayer of calcareous sandstone. Projecting the lateral distribution of subterranean calcareous sandstone is crucial for determining sequence boundary division, reservoir quality, and even CO<sub>2</sub> storage. Research on the sensitive characteristics of calcareous sandstone is still lacking. This study computes the percentage of lithologic difference and performs an intersection analysis of rock physical properties. It is found that Young's impedance, Poisson's ratio, and S-wave modulus have pleasurable sensitivity to distinguish calcareous sandstone. On the basis of this, a new sensitive factor for calcareous sandstone was built. The traditional approximate YPD reflection coefficient equation is only applicable to the weak contrast interface, and the accuracy is limited. This difficulty is solved in this paper by deriving a new equation for the nonlinear reflection coefficient. The equation is expressed by Young's modulus, Poisson's ratio, S-wave modulus, and density. Finally, the broadband nonlinear inversion method is adopted to provide a reasonable low-frequency model for the inversion of parameters. This allows for the realization of a stable inversion of parameters. The simultaneous broadband nonlinear inversion of Young's modulus, Poisson's ratio, and S-wave modulus provides a novel approach for calcareous sandstone prediction. We tested the accuracy and rationality of the method with both synthetic and field data examples.</p></div>\",\"PeriodicalId\":54882,\"journal\":{\"name\":\"Journal of Applied Geophysics\",\"volume\":\"229 \",\"pages\":\"Article 105477\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926985124001939\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926985124001939","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

油田的进一步精细开发受到钙质砂岩夹层的重大影响。预测地下钙质砂岩的横向分布对于确定层序边界划分、储层质量甚至二氧化碳封存都至关重要。有关钙质砂岩敏感特征的研究仍然缺乏。本研究计算了岩性差异百分比,并对岩石物理性质进行了交叉分析。研究发现,杨氏阻抗、泊松比和 S 波模量对区分钙质砂岩具有良好的敏感性。在此基础上,建立了钙质砂岩的新敏感系数。传统的近似 YPD 反射系数方程只适用于弱对比界面,精度有限。本文通过推导新的非线性反射系数方程解决了这一难题。该方程由杨氏模量、泊松比、S 波模量和密度表示。最后,采用宽带非线性反演方法,为参数反演提供合理的低频模型。这样就可以实现稳定的参数反演。同时对杨氏模量、泊松比和 S 波模量进行宽带非线性反演为钙质砂岩预测提供了一种新方法。我们用合成数据和实地数据实例测试了该方法的准确性和合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of calcareous sandstone based on simultaneous broadband nonlinear inversion of Young's modulus, Poisson's ratio and S-wave modulus

The oilfield's further fine development is significantly impacted by the interlayer of calcareous sandstone. Projecting the lateral distribution of subterranean calcareous sandstone is crucial for determining sequence boundary division, reservoir quality, and even CO2 storage. Research on the sensitive characteristics of calcareous sandstone is still lacking. This study computes the percentage of lithologic difference and performs an intersection analysis of rock physical properties. It is found that Young's impedance, Poisson's ratio, and S-wave modulus have pleasurable sensitivity to distinguish calcareous sandstone. On the basis of this, a new sensitive factor for calcareous sandstone was built. The traditional approximate YPD reflection coefficient equation is only applicable to the weak contrast interface, and the accuracy is limited. This difficulty is solved in this paper by deriving a new equation for the nonlinear reflection coefficient. The equation is expressed by Young's modulus, Poisson's ratio, S-wave modulus, and density. Finally, the broadband nonlinear inversion method is adopted to provide a reasonable low-frequency model for the inversion of parameters. This allows for the realization of a stable inversion of parameters. The simultaneous broadband nonlinear inversion of Young's modulus, Poisson's ratio, and S-wave modulus provides a novel approach for calcareous sandstone prediction. We tested the accuracy and rationality of the method with both synthetic and field data examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Geophysics
Journal of Applied Geophysics 地学-地球科学综合
CiteScore
3.60
自引率
10.00%
发文量
274
审稿时长
4 months
期刊介绍: The Journal of Applied Geophysics with its key objective of responding to pertinent and timely needs, places particular emphasis on methodological developments and innovative applications of geophysical techniques for addressing environmental, engineering, and hydrological problems. Related topical research in exploration geophysics and in soil and rock physics is also covered by the Journal of Applied Geophysics.
期刊最新文献
Magnetic diagnosis model for heavy metal pollution in beach sediments of Qingdao, China An improved goal-oriented adaptive finite-element method for 3-D direct current resistivity anisotropic forward modeling using nested tetrahedra Deep learning-based geophysical joint inversion using partial channel drop method Advanced predictive modelling of electrical resistivity for geotechnical and geo-environmental applications using machine learning techniques Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1