用于脑肿瘤精确分类的机器学习和迁移学习技术

Seyed Matin Malakouti, Mohammad Bagher Menhaj, Amir Abolfazl Suratgar
{"title":"用于脑肿瘤精确分类的机器学习和迁移学习技术","authors":"Seyed Matin Malakouti,&nbsp;Mohammad Bagher Menhaj,&nbsp;Amir Abolfazl Suratgar","doi":"10.1016/j.ceh.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>Brain tumors, resulting from uncontrolled and rapid cell growth, pose significant health risks if not treated early. Despite numerous advancements, accurate segmentation and classification remain challenging. This study leverages machine learning (ML) and transfer learning techniques to classify healthy and sick individuals using numerical data and MRI images. We utilized 3762 MRI images alongside Light Gradient Boosting Machine (LightGBM), AdaBoost, gradient boosting, Random Forest, Quadratic Discriminant Analysis, Linear Discriminant Analysis, logistic regression, and transfer learning algorithms. Numerical data was processed with LightGBM, achieving an accuracy of 95.7 %. Transfer learning applied to image data using a modified GoogLeNet model further enhanced classification accuracy to 99.3 %. These results demonstrate the effectiveness of combining ML and transfer learning techniques for accurate brain tumor classification, addressing limitations of prior approaches and offering improved diagnostic reliability. All coding and model implementations were conducted on the Python platform.</p></div>","PeriodicalId":100268,"journal":{"name":"Clinical eHealth","volume":"7 ","pages":"Pages 106-119"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588914124000091/pdfft?md5=802f4d01ec0d0e73328b9da3cc172a18&pid=1-s2.0-S2588914124000091-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Machine learning and transfer learning techniques for accurate brain tumor classification\",\"authors\":\"Seyed Matin Malakouti,&nbsp;Mohammad Bagher Menhaj,&nbsp;Amir Abolfazl Suratgar\",\"doi\":\"10.1016/j.ceh.2024.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Brain tumors, resulting from uncontrolled and rapid cell growth, pose significant health risks if not treated early. Despite numerous advancements, accurate segmentation and classification remain challenging. This study leverages machine learning (ML) and transfer learning techniques to classify healthy and sick individuals using numerical data and MRI images. We utilized 3762 MRI images alongside Light Gradient Boosting Machine (LightGBM), AdaBoost, gradient boosting, Random Forest, Quadratic Discriminant Analysis, Linear Discriminant Analysis, logistic regression, and transfer learning algorithms. Numerical data was processed with LightGBM, achieving an accuracy of 95.7 %. Transfer learning applied to image data using a modified GoogLeNet model further enhanced classification accuracy to 99.3 %. These results demonstrate the effectiveness of combining ML and transfer learning techniques for accurate brain tumor classification, addressing limitations of prior approaches and offering improved diagnostic reliability. All coding and model implementations were conducted on the Python platform.</p></div>\",\"PeriodicalId\":100268,\"journal\":{\"name\":\"Clinical eHealth\",\"volume\":\"7 \",\"pages\":\"Pages 106-119\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2588914124000091/pdfft?md5=802f4d01ec0d0e73328b9da3cc172a18&pid=1-s2.0-S2588914124000091-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical eHealth\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588914124000091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical eHealth","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588914124000091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑肿瘤是由不受控制的快速细胞生长引起的,如果不及早治疗,会对健康造成严重威胁。尽管取得了许多进展,但准确的分割和分类仍具有挑战性。本研究利用机器学习(ML)和迁移学习技术,通过数字数据和核磁共振成像图像对健康人和病人进行分类。我们使用了 3762 幅核磁共振图像以及光梯度提升机 (LightGBM)、AdaBoost、梯度提升、随机森林、二次判别分析、线性判别分析、逻辑回归和迁移学习算法。使用 LightGBM 处理了数值数据,准确率达到 95.7%。使用改进的 GoogLeNet 模型对图像数据进行迁移学习,进一步将分类准确率提高到 99.3%。这些结果表明,结合 ML 和迁移学习技术进行准确的脑肿瘤分类非常有效,既解决了以往方法的局限性,又提高了诊断的可靠性。所有编码和模型实现均在 Python 平台上进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning and transfer learning techniques for accurate brain tumor classification

Brain tumors, resulting from uncontrolled and rapid cell growth, pose significant health risks if not treated early. Despite numerous advancements, accurate segmentation and classification remain challenging. This study leverages machine learning (ML) and transfer learning techniques to classify healthy and sick individuals using numerical data and MRI images. We utilized 3762 MRI images alongside Light Gradient Boosting Machine (LightGBM), AdaBoost, gradient boosting, Random Forest, Quadratic Discriminant Analysis, Linear Discriminant Analysis, logistic regression, and transfer learning algorithms. Numerical data was processed with LightGBM, achieving an accuracy of 95.7 %. Transfer learning applied to image data using a modified GoogLeNet model further enhanced classification accuracy to 99.3 %. These results demonstrate the effectiveness of combining ML and transfer learning techniques for accurate brain tumor classification, addressing limitations of prior approaches and offering improved diagnostic reliability. All coding and model implementations were conducted on the Python platform.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
期刊最新文献
“AI et al.” The perils of overreliance on Artificial Intelligence by authors in scientific research A systematic review of eHealth and mHealth interventions for lymphedema patients Machine learning and transfer learning techniques for accurate brain tumor classification Internet of Things in healthcare: An adaptive ethical framework for IoT in digital health IoMT Tsukamoto Type-2 fuzzy expert system for tuberculosis and Alzheimer’s disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1