修复拒绝约束违规行为的增量算法

IF 3 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Systems Pub Date : 2024-08-05 DOI:10.1016/j.is.2024.102435
Lingfeng Bian , Weidong Yang , Ting Xu , Zijing Tan
{"title":"修复拒绝约束违规行为的增量算法","authors":"Lingfeng Bian ,&nbsp;Weidong Yang ,&nbsp;Ting Xu ,&nbsp;Zijing Tan","doi":"10.1016/j.is.2024.102435","DOIUrl":null,"url":null,"abstract":"<div><p>Data repairing algorithms are extensively studied for improving data quality. Denial constraints (DCs) are commonly employed to state quality specifications that data should satisfy and hence facilitate data repairing since DCs are general enough to subsume many other dependencies. Data in practice are usually frequently updated, which motivates the quest for efficient incremental repairing techniques in response to data updates. In this paper, we present the first incremental algorithm for repairing DC violations. Specifically, given a relational instance <span><math><mi>I</mi></math></span> consistent with a set <span><math><mi>Σ</mi></math></span> of DCs, and a set <span><math><mo>△</mo></math></span> <span><math><mi>I</mi></math></span> of tuple insertions to <span><math><mi>I</mi></math></span>, our aim is to find a set <span><math><mo>△</mo></math></span> <span><math><msup><mrow><mi>I</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of tuple insertions such that <span><math><mi>Σ</mi></math></span> is satisfied on <span><math><mrow><mi>I</mi><mo>+</mo><mo>△</mo></mrow></math></span> <span><math><msup><mrow><mi>I</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>. We first formalize and prove the complexity of the problem of incremental data repairing with DCs. We then present techniques that combine auxiliary indexing structures to efficiently identify DC violations incurred by <span><math><mo>△</mo></math></span> <span><math><mi>I</mi></math></span> <em>w.r.t.</em> <span><math><mi>Σ</mi></math></span>, and further develop an efficient repairing algorithm to compute <span><math><mo>△</mo></math></span> <span><math><msup><mrow><mi>I</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> by resolving DC violations. Finally, using both real-life and synthetic datasets, we conduct extensive experiments to demonstrate the effectiveness and efficiency of our approach.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"126 ","pages":"Article 102435"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An incremental algorithm for repairing denial constraint violations\",\"authors\":\"Lingfeng Bian ,&nbsp;Weidong Yang ,&nbsp;Ting Xu ,&nbsp;Zijing Tan\",\"doi\":\"10.1016/j.is.2024.102435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Data repairing algorithms are extensively studied for improving data quality. Denial constraints (DCs) are commonly employed to state quality specifications that data should satisfy and hence facilitate data repairing since DCs are general enough to subsume many other dependencies. Data in practice are usually frequently updated, which motivates the quest for efficient incremental repairing techniques in response to data updates. In this paper, we present the first incremental algorithm for repairing DC violations. Specifically, given a relational instance <span><math><mi>I</mi></math></span> consistent with a set <span><math><mi>Σ</mi></math></span> of DCs, and a set <span><math><mo>△</mo></math></span> <span><math><mi>I</mi></math></span> of tuple insertions to <span><math><mi>I</mi></math></span>, our aim is to find a set <span><math><mo>△</mo></math></span> <span><math><msup><mrow><mi>I</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> of tuple insertions such that <span><math><mi>Σ</mi></math></span> is satisfied on <span><math><mrow><mi>I</mi><mo>+</mo><mo>△</mo></mrow></math></span> <span><math><msup><mrow><mi>I</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>. We first formalize and prove the complexity of the problem of incremental data repairing with DCs. We then present techniques that combine auxiliary indexing structures to efficiently identify DC violations incurred by <span><math><mo>△</mo></math></span> <span><math><mi>I</mi></math></span> <em>w.r.t.</em> <span><math><mi>Σ</mi></math></span>, and further develop an efficient repairing algorithm to compute <span><math><mo>△</mo></math></span> <span><math><msup><mrow><mi>I</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> by resolving DC violations. Finally, using both real-life and synthetic datasets, we conduct extensive experiments to demonstrate the effectiveness and efficiency of our approach.</p></div>\",\"PeriodicalId\":50363,\"journal\":{\"name\":\"Information Systems\",\"volume\":\"126 \",\"pages\":\"Article 102435\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306437924000930\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437924000930","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

为提高数据质量,人们对数据修复算法进行了广泛研究。通常采用拒绝约束(DC)来说明数据应满足的质量规范,从而促进数据修复,因为拒绝约束的通用性足以包含许多其他依赖关系。在实践中,数据通常会频繁更新,这就促使人们寻求高效的增量修复技术来应对数据更新。在本文中,我们提出了第一种用于修复违反 DC 的增量算法。具体来说,给定一个与一组 DC Σ 一致的关系实例 I 和一组插入到 I 中的元组 △ I,我们的目标是找到一组插入元组 △ I′,从而在 I+△ I′ 上满足 Σ。我们首先形式化并证明了使用 DC 进行增量数据修复问题的复杂性。然后,我们提出了结合辅助索引结构的技术,以有效识别△ I 对Σ的DC违反,并进一步开发了一种有效的修复算法,通过解决DC违反来计算△ I′。最后,我们使用真实数据集和合成数据集进行了大量实验,以证明我们的方法的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An incremental algorithm for repairing denial constraint violations

Data repairing algorithms are extensively studied for improving data quality. Denial constraints (DCs) are commonly employed to state quality specifications that data should satisfy and hence facilitate data repairing since DCs are general enough to subsume many other dependencies. Data in practice are usually frequently updated, which motivates the quest for efficient incremental repairing techniques in response to data updates. In this paper, we present the first incremental algorithm for repairing DC violations. Specifically, given a relational instance I consistent with a set Σ of DCs, and a set I of tuple insertions to I, our aim is to find a set I of tuple insertions such that Σ is satisfied on I+ I. We first formalize and prove the complexity of the problem of incremental data repairing with DCs. We then present techniques that combine auxiliary indexing structures to efficiently identify DC violations incurred by I w.r.t. Σ, and further develop an efficient repairing algorithm to compute I by resolving DC violations. Finally, using both real-life and synthetic datasets, we conduct extensive experiments to demonstrate the effectiveness and efficiency of our approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Systems
Information Systems 工程技术-计算机:信息系统
CiteScore
9.40
自引率
2.70%
发文量
112
审稿时长
53 days
期刊介绍: Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems. Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.
期刊最新文献
STracker: A framework for identifying sentiment changes in customer feedbacks Two-level massive string dictionaries A generative and discriminative model for diversity-promoting recommendation Soundness unknotted: An efficient soundness checking algorithm for arbitrary cyclic process models by loosening loops The composition diagram of a complex process: Enhancing understanding of hierarchical business processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1