为评估并联有源电力滤波器的控制器硬件在环配置建立实际非线性负载模型

IF 4.7 3区 工程技术 Q2 ENERGY & FUELS Energy Reports Pub Date : 2024-08-11 DOI:10.1016/j.egyr.2024.07.056
{"title":"为评估并联有源电力滤波器的控制器硬件在环配置建立实际非线性负载模型","authors":"","doi":"10.1016/j.egyr.2024.07.056","DOIUrl":null,"url":null,"abstract":"<div><p>This work shows the design and validation of a Shunt Active Power Filters (SAPF) using Controller Hardware-In-the-Loop (CHIL) Simulations by using a OP5707XG Real-Time Simulator module provided by OPAL-RT, an external OP8666 controller, a host PC and an oscilloscope for visualization. A novel methodology for the modelling of real non-linear electrical loads by making use of MATLAB/SIMULINK is presented. This allows, in conditions like real physical systems, an evaluation of the behavior of active filters before their prototyping, allowing improvements to be made in their design. For the compensation strategy, the calculation of a compensation current from the estimation of the ideal current is used. This strategy is implemented in a microcontroller system for validation with a CHIL configuration simulation. The results have demonstrated significant progress in harmonic mitigation, with the effectiveness of the SAPF in reducing the current Total Harmonic Distortion (THD) across various load types firmly established. As demonstrated in the test cases, the SAPFs significantly reduced THD from significant double-digit percentages to values well below 3 %. This confirms their significant impact on maintaining the integrity and quality of the power system.</p></div>","PeriodicalId":11798,"journal":{"name":"Energy Reports","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352484724004815/pdfft?md5=64feb12bf7c6d776d78fe1923bbaa323&pid=1-s2.0-S2352484724004815-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Modelling real non-linear loads for a Controller Hardware-in-the-Loop configuration to evaluate a Shunt Active Power Filter\",\"authors\":\"\",\"doi\":\"10.1016/j.egyr.2024.07.056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work shows the design and validation of a Shunt Active Power Filters (SAPF) using Controller Hardware-In-the-Loop (CHIL) Simulations by using a OP5707XG Real-Time Simulator module provided by OPAL-RT, an external OP8666 controller, a host PC and an oscilloscope for visualization. A novel methodology for the modelling of real non-linear electrical loads by making use of MATLAB/SIMULINK is presented. This allows, in conditions like real physical systems, an evaluation of the behavior of active filters before their prototyping, allowing improvements to be made in their design. For the compensation strategy, the calculation of a compensation current from the estimation of the ideal current is used. This strategy is implemented in a microcontroller system for validation with a CHIL configuration simulation. The results have demonstrated significant progress in harmonic mitigation, with the effectiveness of the SAPF in reducing the current Total Harmonic Distortion (THD) across various load types firmly established. As demonstrated in the test cases, the SAPFs significantly reduced THD from significant double-digit percentages to values well below 3 %. This confirms their significant impact on maintaining the integrity and quality of the power system.</p></div>\",\"PeriodicalId\":11798,\"journal\":{\"name\":\"Energy Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352484724004815/pdfft?md5=64feb12bf7c6d776d78fe1923bbaa323&pid=1-s2.0-S2352484724004815-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352484724004815\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352484724004815","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过使用 OPAL-RT 提供的 OP5707XG 实时仿真器模块、外部 OP8666 控制器、PC 主机和示波器进行可视化,利用控制器硬件在环(CHIL)仿真,展示了并联有源电力滤波器(SAPF)的设计和验证。本文介绍了一种利用 MATLAB/SIMULINK 对实际非线性电力负载进行建模的新方法。这样就可以在类似真实物理系统的条件下,在有源滤波器原型设计之前对其行为进行评估,从而改进其设计。在补偿策略方面,采用了通过估算理想电流来计算补偿电流的方法。该策略在微控制器系统中实施,通过 CHIL 配置模拟进行验证。结果表明,SAPF 在降低各种负载类型的电流总谐波失真 (THD) 方面具有显著效果,在谐波缓解方面取得了重大进展。如测试案例所示,SAPF 将总谐波失真从显著的两位数百分比降至远低于 3 % 的值。这证实了 SAPF 对保持电力系统完整性和质量的重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling real non-linear loads for a Controller Hardware-in-the-Loop configuration to evaluate a Shunt Active Power Filter

This work shows the design and validation of a Shunt Active Power Filters (SAPF) using Controller Hardware-In-the-Loop (CHIL) Simulations by using a OP5707XG Real-Time Simulator module provided by OPAL-RT, an external OP8666 controller, a host PC and an oscilloscope for visualization. A novel methodology for the modelling of real non-linear electrical loads by making use of MATLAB/SIMULINK is presented. This allows, in conditions like real physical systems, an evaluation of the behavior of active filters before their prototyping, allowing improvements to be made in their design. For the compensation strategy, the calculation of a compensation current from the estimation of the ideal current is used. This strategy is implemented in a microcontroller system for validation with a CHIL configuration simulation. The results have demonstrated significant progress in harmonic mitigation, with the effectiveness of the SAPF in reducing the current Total Harmonic Distortion (THD) across various load types firmly established. As demonstrated in the test cases, the SAPFs significantly reduced THD from significant double-digit percentages to values well below 3 %. This confirms their significant impact on maintaining the integrity and quality of the power system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Reports
Energy Reports Energy-General Energy
CiteScore
8.20
自引率
13.50%
发文量
2608
审稿时长
38 days
期刊介绍: Energy Reports is a new online multidisciplinary open access journal which focuses on publishing new research in the area of Energy with a rapid review and publication time. Energy Reports will be open to direct submissions and also to submissions from other Elsevier Energy journals, whose Editors have determined that Energy Reports would be a better fit.
期刊最新文献
Optimizing technological configurations in residential energy systems with vehicle-to-home integration and community-level power sharing Corrigendum to “Load forecasting method based on CNN and extended LSTM”, [Energy Rep., vol. 12, December 2024, Pages 2452–2461] Application of wavelet and seasonal-based emotional ANN (EANN) models to predict solar irradiance Corrigendum to “Design and implementation of an autonomous device with an app to monitor the performance of photovoltaic panels” [Energy Rep. 12 (2024) 2498–2510] Biogas generation from food waste through anaerobic digestion technology with emphasis on enhancing circular economy in Sub-Saharan Africa – A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1