{"title":"结合分析和模拟模型的混合方法,用于可重构制造系统的性能评估","authors":"Matteo Mastrangelo, Tullio A.M. Tolio","doi":"10.1016/j.jmsy.2024.07.014","DOIUrl":null,"url":null,"abstract":"<div><p>Today’s dynamic manufacturing context, characterized by frequent product variations and consistently rising production volumes, forces companies to continuously adapt their systems with frequent reconfigurations. To support effective decision-making in this regard, it is necessary to have performance evaluation methods that can be modified conveniently to represent configuration alternatives while accounting for the intertwined dynamics of different production areas. The objective of this paper is to propose a modular architecture for performance evaluation of manufacturing systems, able to integrate models of different parts of the same system that are built independently from each other with different approaches, as analytical or simulation. The proposed method is based on the decomposition approach and evaluates the performance of manufacturing systems at the steady-state. The method has been validated through comparison with discrete event simulation considering different system layouts and parameters. Results demonstrate the accuracy of the method and the robustness of the underlying evaluation algorithm. The applicability of the method in industry has been proven in a case study involving the reconfiguration analysis of a manufacturing system producing electrical distribution equipment in scenarios with strongly increasing demand of products.</p></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"76 ","pages":"Pages 259-280"},"PeriodicalIF":12.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid method combining analytical and simulation models for performance evaluation of reconfigurable manufacturing systems\",\"authors\":\"Matteo Mastrangelo, Tullio A.M. Tolio\",\"doi\":\"10.1016/j.jmsy.2024.07.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Today’s dynamic manufacturing context, characterized by frequent product variations and consistently rising production volumes, forces companies to continuously adapt their systems with frequent reconfigurations. To support effective decision-making in this regard, it is necessary to have performance evaluation methods that can be modified conveniently to represent configuration alternatives while accounting for the intertwined dynamics of different production areas. The objective of this paper is to propose a modular architecture for performance evaluation of manufacturing systems, able to integrate models of different parts of the same system that are built independently from each other with different approaches, as analytical or simulation. The proposed method is based on the decomposition approach and evaluates the performance of manufacturing systems at the steady-state. The method has been validated through comparison with discrete event simulation considering different system layouts and parameters. Results demonstrate the accuracy of the method and the robustness of the underlying evaluation algorithm. The applicability of the method in industry has been proven in a case study involving the reconfiguration analysis of a manufacturing system producing electrical distribution equipment in scenarios with strongly increasing demand of products.</p></div>\",\"PeriodicalId\":16227,\"journal\":{\"name\":\"Journal of Manufacturing Systems\",\"volume\":\"76 \",\"pages\":\"Pages 259-280\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278612524001614\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612524001614","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
A hybrid method combining analytical and simulation models for performance evaluation of reconfigurable manufacturing systems
Today’s dynamic manufacturing context, characterized by frequent product variations and consistently rising production volumes, forces companies to continuously adapt their systems with frequent reconfigurations. To support effective decision-making in this regard, it is necessary to have performance evaluation methods that can be modified conveniently to represent configuration alternatives while accounting for the intertwined dynamics of different production areas. The objective of this paper is to propose a modular architecture for performance evaluation of manufacturing systems, able to integrate models of different parts of the same system that are built independently from each other with different approaches, as analytical or simulation. The proposed method is based on the decomposition approach and evaluates the performance of manufacturing systems at the steady-state. The method has been validated through comparison with discrete event simulation considering different system layouts and parameters. Results demonstrate the accuracy of the method and the robustness of the underlying evaluation algorithm. The applicability of the method in industry has been proven in a case study involving the reconfiguration analysis of a manufacturing system producing electrical distribution equipment in scenarios with strongly increasing demand of products.
期刊介绍:
The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs.
With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.