通过可调分类损失解决 GAN 训练不稳定性问题

Monica Welfert;Gowtham R. Kurri;Kyle Otstot;Lalitha Sankar
{"title":"通过可调分类损失解决 GAN 训练不稳定性问题","authors":"Monica Welfert;Gowtham R. Kurri;Kyle Otstot;Lalitha Sankar","doi":"10.1109/JSAIT.2024.3415670","DOIUrl":null,"url":null,"abstract":"Generative adversarial networks (GANs), modeled as a zero-sum game between a generator (G) and a discriminator (D), allow generating synthetic data with formal guarantees. Noting that D is a classifier, we begin by reformulating the GAN value function using class probability estimation (CPE) losses. We prove a two-way correspondence between CPE loss GANs and f-GANs which minimize f-divergences. We also show that all symmetric f-divergences are equivalent in convergence. In the finite sample and model capacity setting, we define and obtain bounds on estimation and generalization errors. We specialize these results to \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n-GANs, defined using \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n-loss, a tunable CPE loss family parametrized by \n<inline-formula> <tex-math>$\\alpha \\in (0,\\infty $ </tex-math></inline-formula>\n]. We next introduce a class of dual-objective GANs to address training instabilities of GANs by modeling each player’s objective using \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n-loss to obtain \n<inline-formula> <tex-math>$(\\alpha _{D},\\alpha _{G})$ </tex-math></inline-formula>\n-GANs. We show that the resulting non-zero sum game simplifies to minimizing an f-divergence under appropriate conditions on \n<inline-formula> <tex-math>$(\\alpha _{D},\\alpha _{G})$ </tex-math></inline-formula>\n. Generalizing this dual-objective formulation using CPE losses, we define and obtain upper bounds on an appropriately defined estimation error. Finally, we highlight the value of tuning \n<inline-formula> <tex-math>$(\\alpha _{D},\\alpha _{G})$ </tex-math></inline-formula>\n in alleviating training instabilities for the synthetic 2D Gaussian mixture ring as well as the large publicly available Celeb-A and LSUN Classroom image datasets.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"5 ","pages":"534-553"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addressing GAN Training Instabilities via Tunable Classification Losses\",\"authors\":\"Monica Welfert;Gowtham R. Kurri;Kyle Otstot;Lalitha Sankar\",\"doi\":\"10.1109/JSAIT.2024.3415670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative adversarial networks (GANs), modeled as a zero-sum game between a generator (G) and a discriminator (D), allow generating synthetic data with formal guarantees. Noting that D is a classifier, we begin by reformulating the GAN value function using class probability estimation (CPE) losses. We prove a two-way correspondence between CPE loss GANs and f-GANs which minimize f-divergences. We also show that all symmetric f-divergences are equivalent in convergence. In the finite sample and model capacity setting, we define and obtain bounds on estimation and generalization errors. We specialize these results to \\n<inline-formula> <tex-math>$\\\\alpha $ </tex-math></inline-formula>\\n-GANs, defined using \\n<inline-formula> <tex-math>$\\\\alpha $ </tex-math></inline-formula>\\n-loss, a tunable CPE loss family parametrized by \\n<inline-formula> <tex-math>$\\\\alpha \\\\in (0,\\\\infty $ </tex-math></inline-formula>\\n]. We next introduce a class of dual-objective GANs to address training instabilities of GANs by modeling each player’s objective using \\n<inline-formula> <tex-math>$\\\\alpha $ </tex-math></inline-formula>\\n-loss to obtain \\n<inline-formula> <tex-math>$(\\\\alpha _{D},\\\\alpha _{G})$ </tex-math></inline-formula>\\n-GANs. We show that the resulting non-zero sum game simplifies to minimizing an f-divergence under appropriate conditions on \\n<inline-formula> <tex-math>$(\\\\alpha _{D},\\\\alpha _{G})$ </tex-math></inline-formula>\\n. Generalizing this dual-objective formulation using CPE losses, we define and obtain upper bounds on an appropriately defined estimation error. Finally, we highlight the value of tuning \\n<inline-formula> <tex-math>$(\\\\alpha _{D},\\\\alpha _{G})$ </tex-math></inline-formula>\\n in alleviating training instabilities for the synthetic 2D Gaussian mixture ring as well as the large publicly available Celeb-A and LSUN Classroom image datasets.\",\"PeriodicalId\":73295,\"journal\":{\"name\":\"IEEE journal on selected areas in information theory\",\"volume\":\"5 \",\"pages\":\"534-553\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in information theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10565846/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10565846/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生成式对抗网络(GAN)被模拟为生成器(G)和判别器(D)之间的零和博弈,可以生成具有形式保证的合成数据。注意到 D 是一个分类器,我们首先使用类概率估计(CPE)损失重新表述了 GAN 的价值函数。我们证明了 CPE 损失 GAN 与 f-GAN 之间的双向对应关系,后者最大限度地减小了 f 分歧。我们还证明了所有对称的 f-divergences 在收敛性上是等价的。在有限样本和模型容量设置中,我们定义并获得了估计误差和泛化误差的界限。我们将这些结果专门应用于$\alpha $ -GANs,使用$\alpha $ -loss定义,$\alpha \in (0,\infty $ ]是一个参数为$\alpha \in (0,\infty $ ]的可调CPE损失族。接下来,我们引入了一类双目标 GAN,通过使用 $\alpha $ -loss 对每个参与者的目标进行建模,得到 $(\alpha _{D},\alpha _{G})$ -GAN,从而解决 GAN 的训练不稳定性问题。我们证明,由此产生的非零和博弈在 $(\alpha _{D},\alpha _{G})$ 的适当条件下简化为最小化 f-发散。通过使用 CPE 损失对这一双目标表述进行推广,我们定义并获得了适当定义的估计误差上限。最后,我们强调了调整 $(\alpha _{D},\alpha _{G})$ 在缓解合成二维高斯混合环以及大型公开 Celeb-A 和 LSUN 课堂图像数据集的训练不稳定性方面的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Addressing GAN Training Instabilities via Tunable Classification Losses
Generative adversarial networks (GANs), modeled as a zero-sum game between a generator (G) and a discriminator (D), allow generating synthetic data with formal guarantees. Noting that D is a classifier, we begin by reformulating the GAN value function using class probability estimation (CPE) losses. We prove a two-way correspondence between CPE loss GANs and f-GANs which minimize f-divergences. We also show that all symmetric f-divergences are equivalent in convergence. In the finite sample and model capacity setting, we define and obtain bounds on estimation and generalization errors. We specialize these results to $\alpha $ -GANs, defined using $\alpha $ -loss, a tunable CPE loss family parametrized by $\alpha \in (0,\infty $ ]. We next introduce a class of dual-objective GANs to address training instabilities of GANs by modeling each player’s objective using $\alpha $ -loss to obtain $(\alpha _{D},\alpha _{G})$ -GANs. We show that the resulting non-zero sum game simplifies to minimizing an f-divergence under appropriate conditions on $(\alpha _{D},\alpha _{G})$ . Generalizing this dual-objective formulation using CPE losses, we define and obtain upper bounds on an appropriately defined estimation error. Finally, we highlight the value of tuning $(\alpha _{D},\alpha _{G})$ in alleviating training instabilities for the synthetic 2D Gaussian mixture ring as well as the large publicly available Celeb-A and LSUN Classroom image datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
期刊最新文献
Source Coding for Markov Sources With Partial Memoryless Side Information at the Decoder Deviation From Maximal Entanglement for Mid-Spectrum Eigenstates of Local Hamiltonians Statistical Inference With Limited Memory: A Survey Tightening Continuity Bounds for Entropies and Bounds on Quantum Capacities Dynamic Group Testing to Control and Monitor Disease Progression in a Population
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1