空气质量的变化、挥发性有机化合物形成臭氧的可能性以及德里居民因空气污染而面临的相关健康风险†。

IF 2.8 Q3 ENVIRONMENTAL SCIENCES Environmental science: atmospheres Pub Date : 2024-07-15 DOI:10.1039/D4EA00064A
Saurabh Sharma, Anjum Singhal, Veluswamy Venkatramanan, Pawan Verma and Mayank Pandey
{"title":"空气质量的变化、挥发性有机化合物形成臭氧的可能性以及德里居民因空气污染而面临的相关健康风险†。","authors":"Saurabh Sharma, Anjum Singhal, Veluswamy Venkatramanan, Pawan Verma and Mayank Pandey","doi":"10.1039/D4EA00064A","DOIUrl":null,"url":null,"abstract":"<p >The present long-term study has been conducted with dual objectives: firstly, to monitor the spatio-temporal variation of ambient air quality parameters and secondly, to evaluate the impact of air pollutants on the Delhi population. Five years (January 2019 to December 2023) of data of six key pollutants (PM<small><sub>10</sub></small>, PM<small><sub>2.5</sub></small>, NO<small><sub>2</sub></small>, O<small><sub>3</sub></small>, Benzene, and Toluene) were collected by continuous ambient air quality monitoring stations, obtained from the Central Pollution Control Board portal. The impact of air pollutants on human health was assessed using different indices and the AirQ+ model developed by the World Health Organization (WHO). Additionally, the ozone formation potential (OFP) of benzene and toluene was evaluated. The findings of the study revealed that the concentrations of PM<small><sub>10</sub></small> and PM<small><sub>2.5</sub></small> exceeded both national and global guidelines across all the sites throughout the study period. Notably, industrial sites were classified as the severe category according to the National Air Quality Index. At industrial sites, the OFP of volatile organic compounds (VOCs) was observed to be higher in comparison to commercial sites. The AirQ+ model analysis in the health risk assessment indicated a strong association between PM<small><sub>10</sub></small> exposure and mortality from respiratory (91.36%) and chronic bronchitis (90.85%) diseases. Additionally, long-term PM<small><sub>2.5</sub></small> exposure was linked to an increased risk of stroke (65%) and circulatory (63.83%) mortality.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 8","pages":" 897-910"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ea/d4ea00064a?page=search","citationCount":"0","resultStr":"{\"title\":\"Variability in air quality, ozone formation potential by VOCs, and associated air pollution attributable health risks for Delhi's inhabitants†\",\"authors\":\"Saurabh Sharma, Anjum Singhal, Veluswamy Venkatramanan, Pawan Verma and Mayank Pandey\",\"doi\":\"10.1039/D4EA00064A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The present long-term study has been conducted with dual objectives: firstly, to monitor the spatio-temporal variation of ambient air quality parameters and secondly, to evaluate the impact of air pollutants on the Delhi population. Five years (January 2019 to December 2023) of data of six key pollutants (PM<small><sub>10</sub></small>, PM<small><sub>2.5</sub></small>, NO<small><sub>2</sub></small>, O<small><sub>3</sub></small>, Benzene, and Toluene) were collected by continuous ambient air quality monitoring stations, obtained from the Central Pollution Control Board portal. The impact of air pollutants on human health was assessed using different indices and the AirQ+ model developed by the World Health Organization (WHO). Additionally, the ozone formation potential (OFP) of benzene and toluene was evaluated. The findings of the study revealed that the concentrations of PM<small><sub>10</sub></small> and PM<small><sub>2.5</sub></small> exceeded both national and global guidelines across all the sites throughout the study period. Notably, industrial sites were classified as the severe category according to the National Air Quality Index. At industrial sites, the OFP of volatile organic compounds (VOCs) was observed to be higher in comparison to commercial sites. The AirQ+ model analysis in the health risk assessment indicated a strong association between PM<small><sub>10</sub></small> exposure and mortality from respiratory (91.36%) and chronic bronchitis (90.85%) diseases. Additionally, long-term PM<small><sub>2.5</sub></small> exposure was linked to an increased risk of stroke (65%) and circulatory (63.83%) mortality.</p>\",\"PeriodicalId\":72942,\"journal\":{\"name\":\"Environmental science: atmospheres\",\"volume\":\" 8\",\"pages\":\" 897-910\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ea/d4ea00064a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental science: atmospheres\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ea/d4ea00064a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science: atmospheres","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ea/d4ea00064a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本长期研究具有双重目标:首先,监测环境空气质量参数的时空变化;其次,评估空气污染物对德里人口的影响。从中央污染控制委员会门户网站获得了连续环境空气质量监测站收集的五年(2019 年 1 月至 2023 年 12 月)六种主要污染物(PM10、PM2.5、二氧化氮、臭氧、苯和甲苯)的数据。空气污染物对人体健康的影响采用不同的指数和世界卫生组织(WHO)开发的 AirQ+ 模型进行评估。此外,还评估了苯和甲苯的臭氧形成潜能值 (OFP)。研究结果表明,在整个研究期间,所有地点的 PM10 和 PM2.5 浓度都超过了国家和全球准则。值得注意的是,根据国家空气质量指数,工业用地被归为严重类别。在工业场地,与商业场地相比,挥发性有机化合物(VOCs)的 OFP 值更高。健康风险评估中的 AirQ+ 模型分析表明,PM10 暴露与呼吸系统疾病(91.36%)和慢性支气管炎(90.85%)死亡率之间存在密切联系。此外,长期暴露于 PM2.5 与中风(65%)和循环系统疾病(63.83%)的死亡风险增加有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variability in air quality, ozone formation potential by VOCs, and associated air pollution attributable health risks for Delhi's inhabitants†

The present long-term study has been conducted with dual objectives: firstly, to monitor the spatio-temporal variation of ambient air quality parameters and secondly, to evaluate the impact of air pollutants on the Delhi population. Five years (January 2019 to December 2023) of data of six key pollutants (PM10, PM2.5, NO2, O3, Benzene, and Toluene) were collected by continuous ambient air quality monitoring stations, obtained from the Central Pollution Control Board portal. The impact of air pollutants on human health was assessed using different indices and the AirQ+ model developed by the World Health Organization (WHO). Additionally, the ozone formation potential (OFP) of benzene and toluene was evaluated. The findings of the study revealed that the concentrations of PM10 and PM2.5 exceeded both national and global guidelines across all the sites throughout the study period. Notably, industrial sites were classified as the severe category according to the National Air Quality Index. At industrial sites, the OFP of volatile organic compounds (VOCs) was observed to be higher in comparison to commercial sites. The AirQ+ model analysis in the health risk assessment indicated a strong association between PM10 exposure and mortality from respiratory (91.36%) and chronic bronchitis (90.85%) diseases. Additionally, long-term PM2.5 exposure was linked to an increased risk of stroke (65%) and circulatory (63.83%) mortality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
Back cover Real-time chemical characterization of primary and aged biomass burning aerosols derived from sub-Saharan African biomass fuels in smoldering fires. A framework for describing and classifying methane reporting requirements, emission sources, and monitoring methods† Does gas-phase sulfur dioxide remove films of atmosphere-extracted organic material from the aqueous aerosol air–water interface?† Enhanced detection of aromatic oxidation products using NO3 - chemical ionization mass spectrometry with limited nitric acid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1