利用遥感和机器学习进行大规模河流磷估算

IF 3.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Journal of Geophysical Research: Biogeosciences Pub Date : 2024-08-09 DOI:10.1029/2024JG008121
Pradeep Ramtel, Dongmei Feng, John Gardner
{"title":"利用遥感和机器学习进行大规模河流磷估算","authors":"Pradeep Ramtel,&nbsp;Dongmei Feng,&nbsp;John Gardner","doi":"10.1029/2024JG008121","DOIUrl":null,"url":null,"abstract":"<p>Phosphorus pollution is a major water quality issue impacting the environment and human health. Traditional methods limit the frequency and extent of total phosphorus (TP) measurements across many rivers. However, remote sensing can accurately estimate riverine TP; nevertheless, no large-scale assessment of riverine TP using remote sensing exists. Large-scale models using remote sensing can provide a fast and consistent method for TP measurement, important for data generalization and accessing extensive spatial-temporal change in TP. Our study uses remote sensing and machine learning to estimate the TP in rivers in the contiguous United States (CONUS). Initially, we developed a national scale matchup data set for Landsat detectable rivers (river width &gt;30 m) using in situ TP and surface reflectance. We used in situ data from the Water Quality Portal (WQP), alongside water surface reflectance data from Landsat 5, 7, and 8 spanning from 1984 to 2021. Then, we used this data set to develop a machine learning (ML) model using different preprocessing methods and algorithms. We found that using high-level vegetation in the clustering approach and over-sampling or under-sampling our training data in the sampling approach improved our model estimation accuracy. We compared XGBLinear, XGBTree, Regularized Random Forest (RRF), and K-Nearest neighbors ML algorithms and selected XGBLinear as the best model with an R<sup>2</sup> of 0.604, RMSE of 0.103 mg/L, mean average error of 0.83, and NSE of 0.602. Finally, we identified human footprint, elevation, river area, and soil erosion as the main attributes influencing the accuracy of estimated TP from the ML model.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"129 8","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008121","citationCount":"0","resultStr":"{\"title\":\"Toward Large-Scale Riverine Phosphorus Estimation Using Remote Sensing and Machine Learning\",\"authors\":\"Pradeep Ramtel,&nbsp;Dongmei Feng,&nbsp;John Gardner\",\"doi\":\"10.1029/2024JG008121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phosphorus pollution is a major water quality issue impacting the environment and human health. Traditional methods limit the frequency and extent of total phosphorus (TP) measurements across many rivers. However, remote sensing can accurately estimate riverine TP; nevertheless, no large-scale assessment of riverine TP using remote sensing exists. Large-scale models using remote sensing can provide a fast and consistent method for TP measurement, important for data generalization and accessing extensive spatial-temporal change in TP. Our study uses remote sensing and machine learning to estimate the TP in rivers in the contiguous United States (CONUS). Initially, we developed a national scale matchup data set for Landsat detectable rivers (river width &gt;30 m) using in situ TP and surface reflectance. We used in situ data from the Water Quality Portal (WQP), alongside water surface reflectance data from Landsat 5, 7, and 8 spanning from 1984 to 2021. Then, we used this data set to develop a machine learning (ML) model using different preprocessing methods and algorithms. We found that using high-level vegetation in the clustering approach and over-sampling or under-sampling our training data in the sampling approach improved our model estimation accuracy. We compared XGBLinear, XGBTree, Regularized Random Forest (RRF), and K-Nearest neighbors ML algorithms and selected XGBLinear as the best model with an R<sup>2</sup> of 0.604, RMSE of 0.103 mg/L, mean average error of 0.83, and NSE of 0.602. Finally, we identified human footprint, elevation, river area, and soil erosion as the main attributes influencing the accuracy of estimated TP from the ML model.</p>\",\"PeriodicalId\":16003,\"journal\":{\"name\":\"Journal of Geophysical Research: Biogeosciences\",\"volume\":\"129 8\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008121\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Biogeosciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008121\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008121","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

磷污染是影响环境和人类健康的主要水质问题。传统方法限制了对许多河流进行总磷(TP)测量的频率和范围。然而,遥感技术可以准确估算河流的总磷量,但目前还没有利用遥感技术对河流总磷量进行大规模评估。利用遥感技术建立大规模模型可提供快速、一致的 TP 测量方法,这对于数据归纳和获取 TP 的广泛时空变化非常重要。我们的研究利用遥感和机器学习来估算美国毗连地区(CONUS)河流的总磷量。起初,我们利用原位总热量和地表反射率为 Landsat 可探测到的河流(河宽 30 米)开发了一个全国范围的匹配数据集。我们使用了来自水质门户网站(WQP)的原位数据,以及来自 Landsat 5、7 和 8 的水面反射率数据(时间跨度为 1984 年至 2021 年)。然后,我们利用这个数据集,采用不同的预处理方法和算法开发了一个机器学习(ML)模型。我们发现,在聚类方法中使用高级植被,以及在采样方法中对训练数据进行过度采样或采样不足,都提高了模型估计的准确性。我们比较了 XGBLinear、XGBTree、正则化随机森林 (RRF) 和 K-Nearest neighbors ML 算法,并选择 XGBLinear 作为最佳模型,其 R2 为 0.604,RMSE 为 0.103 mg/L,平均平均误差为 0.83,NSE 为 0.602。最后,我们确定人类足迹、海拔高度、河流面积和土壤侵蚀是影响 ML 模型估计 TP 准确性的主要属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward Large-Scale Riverine Phosphorus Estimation Using Remote Sensing and Machine Learning

Phosphorus pollution is a major water quality issue impacting the environment and human health. Traditional methods limit the frequency and extent of total phosphorus (TP) measurements across many rivers. However, remote sensing can accurately estimate riverine TP; nevertheless, no large-scale assessment of riverine TP using remote sensing exists. Large-scale models using remote sensing can provide a fast and consistent method for TP measurement, important for data generalization and accessing extensive spatial-temporal change in TP. Our study uses remote sensing and machine learning to estimate the TP in rivers in the contiguous United States (CONUS). Initially, we developed a national scale matchup data set for Landsat detectable rivers (river width >30 m) using in situ TP and surface reflectance. We used in situ data from the Water Quality Portal (WQP), alongside water surface reflectance data from Landsat 5, 7, and 8 spanning from 1984 to 2021. Then, we used this data set to develop a machine learning (ML) model using different preprocessing methods and algorithms. We found that using high-level vegetation in the clustering approach and over-sampling or under-sampling our training data in the sampling approach improved our model estimation accuracy. We compared XGBLinear, XGBTree, Regularized Random Forest (RRF), and K-Nearest neighbors ML algorithms and selected XGBLinear as the best model with an R2 of 0.604, RMSE of 0.103 mg/L, mean average error of 0.83, and NSE of 0.602. Finally, we identified human footprint, elevation, river area, and soil erosion as the main attributes influencing the accuracy of estimated TP from the ML model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Biogeosciences
Journal of Geophysical Research: Biogeosciences Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
5.40%
发文量
242
期刊介绍: JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology
期刊最新文献
Seasonal Variation in Flow and Metabolic Activity Drive Nitrate and Carbon Supply and Demand in a Temperate Agricultural Stream Shorter Ice Duration and Changing Phenology Influence Under-Ice Lake Temperature Dynamics A Better Understanding of Atmospheric Methane Sources Using 13CH3D and 12CH2D2 Clumped Isotopes Nitrate Loads From Land to Stream Are Balanced by In-Stream Nitrate Uptake Across Seasons in a Dryland Stream Network Impact of Oversimplified Parameters on BVOC Emissions Estimation in China: A Sensitivity Analysis Using the WRF-CLM4-MEGAN Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1