利用深度学习改进 5G 网络切片,增强 SDN 环境中的 QoS 抗攻击能力

IF 1.5 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IET Communications Pub Date : 2024-06-17 DOI:10.1049/cmu2.12735
Mohammed Salah Abood, Hua Wang, Bal S. Virdee, Dongxuan He, Maha Fathy, Abdulganiyu Abdu Yusuf, Omar Jamal, Taha A. Elwi, Mohammad Alibakhshikenari, Lida Kouhalvandi, Ashfaq Ahmad
{"title":"利用深度学习改进 5G 网络切片,增强 SDN 环境中的 QoS 抗攻击能力","authors":"Mohammed Salah Abood,&nbsp;Hua Wang,&nbsp;Bal S. Virdee,&nbsp;Dongxuan He,&nbsp;Maha Fathy,&nbsp;Abdulganiyu Abdu Yusuf,&nbsp;Omar Jamal,&nbsp;Taha A. Elwi,&nbsp;Mohammad Alibakhshikenari,&nbsp;Lida Kouhalvandi,&nbsp;Ashfaq Ahmad","doi":"10.1049/cmu2.12735","DOIUrl":null,"url":null,"abstract":"<p>Within the evolving landscape of fifth-generation (5G) wireless networks, the introduction of network-slicing protocols has become pivotal, enabling the accommodation of diverse application needs while fortifying defences against potential security breaches. This study endeavours to construct a comprehensive network-slicing model integrated with an attack detection system within the 5G framework. Leveraging software-defined networking (SDN) along with deep learning techniques, this approach seeks to fortify security measures while optimizing network performance. This undertaking introduces network slicing predicated on SDN with the OpenFlow protocol and Ryu control technology, complemented by a neural network model for attack detection using deep learning methodologies. Additionally, the proposed convolutional neural networks-long short-term memory approach demonstrates superiority over conventional ML algorithms, signifying its potential for real-time attack detection. Evaluation of the proposed system using a 5G dataset showcases an impressive accuracy of 99%, surpassing previous studies, and affirming the efficacy of the approach. Moreover, network slicing significantly enhances quality of service by segmenting services based on bandwidth. Future research will concentrate on real-world implementation, encompassing diverse dataset evaluations, and assessing the model's adaptability across varied scenarios.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"18 13","pages":"759-777"},"PeriodicalIF":1.5000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12735","citationCount":"0","resultStr":"{\"title\":\"Improved 5G network slicing for enhanced QoS against attack in SDN environment using deep learning\",\"authors\":\"Mohammed Salah Abood,&nbsp;Hua Wang,&nbsp;Bal S. Virdee,&nbsp;Dongxuan He,&nbsp;Maha Fathy,&nbsp;Abdulganiyu Abdu Yusuf,&nbsp;Omar Jamal,&nbsp;Taha A. Elwi,&nbsp;Mohammad Alibakhshikenari,&nbsp;Lida Kouhalvandi,&nbsp;Ashfaq Ahmad\",\"doi\":\"10.1049/cmu2.12735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Within the evolving landscape of fifth-generation (5G) wireless networks, the introduction of network-slicing protocols has become pivotal, enabling the accommodation of diverse application needs while fortifying defences against potential security breaches. This study endeavours to construct a comprehensive network-slicing model integrated with an attack detection system within the 5G framework. Leveraging software-defined networking (SDN) along with deep learning techniques, this approach seeks to fortify security measures while optimizing network performance. This undertaking introduces network slicing predicated on SDN with the OpenFlow protocol and Ryu control technology, complemented by a neural network model for attack detection using deep learning methodologies. Additionally, the proposed convolutional neural networks-long short-term memory approach demonstrates superiority over conventional ML algorithms, signifying its potential for real-time attack detection. Evaluation of the proposed system using a 5G dataset showcases an impressive accuracy of 99%, surpassing previous studies, and affirming the efficacy of the approach. Moreover, network slicing significantly enhances quality of service by segmenting services based on bandwidth. Future research will concentrate on real-world implementation, encompassing diverse dataset evaluations, and assessing the model's adaptability across varied scenarios.</p>\",\"PeriodicalId\":55001,\"journal\":{\"name\":\"IET Communications\",\"volume\":\"18 13\",\"pages\":\"759-777\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12735\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12735\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12735","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在不断发展的第五代(5G)无线网络中,网络切片协议的引入变得至关重要,它既能满足不同的应用需求,又能加强对潜在安全漏洞的防御。本研究致力于在 5G 框架内构建一个集成了攻击检测系统的综合网络切片模型。该方法利用软件定义网络(SDN)和深度学习技术,力求在优化网络性能的同时强化安全措施。这项工作引入了基于 SDN 的网络切片技术、OpenFlow 协议和 Ryu 控制技术,并辅以利用深度学习方法进行攻击检测的神经网络模型。此外,所提出的卷积神经网络长短期记忆方法比传统的 ML 算法更具优势,这表明它具有实时攻击检测的潜力。使用 5G 数据集对所提议的系统进行的评估显示,其准确率达到了令人印象深刻的 99%,超越了以往的研究,肯定了该方法的功效。此外,网络切片还能根据带宽分割服务,从而大大提高服务质量。未来的研究将集中于现实世界的实施,包括各种数据集评估,以及评估模型在不同场景下的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved 5G network slicing for enhanced QoS against attack in SDN environment using deep learning

Within the evolving landscape of fifth-generation (5G) wireless networks, the introduction of network-slicing protocols has become pivotal, enabling the accommodation of diverse application needs while fortifying defences against potential security breaches. This study endeavours to construct a comprehensive network-slicing model integrated with an attack detection system within the 5G framework. Leveraging software-defined networking (SDN) along with deep learning techniques, this approach seeks to fortify security measures while optimizing network performance. This undertaking introduces network slicing predicated on SDN with the OpenFlow protocol and Ryu control technology, complemented by a neural network model for attack detection using deep learning methodologies. Additionally, the proposed convolutional neural networks-long short-term memory approach demonstrates superiority over conventional ML algorithms, signifying its potential for real-time attack detection. Evaluation of the proposed system using a 5G dataset showcases an impressive accuracy of 99%, surpassing previous studies, and affirming the efficacy of the approach. Moreover, network slicing significantly enhances quality of service by segmenting services based on bandwidth. Future research will concentrate on real-world implementation, encompassing diverse dataset evaluations, and assessing the model's adaptability across varied scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Communications
IET Communications 工程技术-工程:电子与电气
CiteScore
4.30
自引率
6.20%
发文量
220
审稿时长
5.9 months
期刊介绍: IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth. Topics include, but are not limited to: Coding and Communication Theory; Modulation and Signal Design; Wired, Wireless and Optical Communication; Communication System Special Issues. Current Call for Papers: Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf
期刊最新文献
A deep learning-based approach for pseudo-satellite positioning Analysis of interference effect in VL-NOMA network considering signal power parameters performance An innovative model for an enhanced dual intrusion detection system using LZ-JC-DBSCAN, EPRC-RPOA and EG-GELU-GRU A high-precision timing and frequency synchronization algorithm for multi-h CPM signals Dual-user joint sensing and communications with time-divisioned bi-static radar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1