{"title":"多肽生物膜传输中的阴离子钙钛矿","authors":"Justin Neumann, Andreas Hennig","doi":"10.1002/ijch.202400023","DOIUrl":null,"url":null,"abstract":"<p>Biomembranes function as hydrophobic barriers for hydrophilic substances enabling compartmentalization in biological systems. This poses, however, a problem for the targeted introduction of cargo into cells. The result is a high demand for delivery pathways into cells with the goal to investigate biological processes or to treat diseases by improved delivery. Polycationic cell-penetrating peptides (CPPs) are interesting as they can cross cell membranes and transport attached cargos directly into the cytosol. Their efficiency can be improved by anionic amphiphilic counterion activators, which bind to the CPPs to form charge-neutralized counterion-CPP complexes with sufficient hydrophobicity to cross the lipid bilayer membrane. This review summarizes recent results, which establish amphiphilic calixarenes as a new class of biocompatible and non-cytotoxic counterion activators with very high transport activities at nanomolar concentrations. We also include a brief summary of fluorescence-based assays with large unilamellar vesicles (LUVs) to investigate counterion-activated transport. Current methods use liposome-encapsulated, supramolecular host-dye reporter pairs including calixarenes, which provide new mechanistic insights and enable rapid in vitro identification of suitable activators. Taken together, amphiphilic calixarenes are currently emerging as prime candidates for counterion activation of membrane transport, which are highly modifiable and can be specifically tailored towards different cargoes and membrane types.</p>","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"64 6-7","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202400023","citationCount":"0","resultStr":"{\"title\":\"Anionic Calixarenes in Biomembrane Transport of Peptides\",\"authors\":\"Justin Neumann, Andreas Hennig\",\"doi\":\"10.1002/ijch.202400023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biomembranes function as hydrophobic barriers for hydrophilic substances enabling compartmentalization in biological systems. This poses, however, a problem for the targeted introduction of cargo into cells. The result is a high demand for delivery pathways into cells with the goal to investigate biological processes or to treat diseases by improved delivery. Polycationic cell-penetrating peptides (CPPs) are interesting as they can cross cell membranes and transport attached cargos directly into the cytosol. Their efficiency can be improved by anionic amphiphilic counterion activators, which bind to the CPPs to form charge-neutralized counterion-CPP complexes with sufficient hydrophobicity to cross the lipid bilayer membrane. This review summarizes recent results, which establish amphiphilic calixarenes as a new class of biocompatible and non-cytotoxic counterion activators with very high transport activities at nanomolar concentrations. We also include a brief summary of fluorescence-based assays with large unilamellar vesicles (LUVs) to investigate counterion-activated transport. Current methods use liposome-encapsulated, supramolecular host-dye reporter pairs including calixarenes, which provide new mechanistic insights and enable rapid in vitro identification of suitable activators. Taken together, amphiphilic calixarenes are currently emerging as prime candidates for counterion activation of membrane transport, which are highly modifiable and can be specifically tailored towards different cargoes and membrane types.</p>\",\"PeriodicalId\":14686,\"journal\":{\"name\":\"Israel Journal of Chemistry\",\"volume\":\"64 6-7\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202400023\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ijch.202400023\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ijch.202400023","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Anionic Calixarenes in Biomembrane Transport of Peptides
Biomembranes function as hydrophobic barriers for hydrophilic substances enabling compartmentalization in biological systems. This poses, however, a problem for the targeted introduction of cargo into cells. The result is a high demand for delivery pathways into cells with the goal to investigate biological processes or to treat diseases by improved delivery. Polycationic cell-penetrating peptides (CPPs) are interesting as they can cross cell membranes and transport attached cargos directly into the cytosol. Their efficiency can be improved by anionic amphiphilic counterion activators, which bind to the CPPs to form charge-neutralized counterion-CPP complexes with sufficient hydrophobicity to cross the lipid bilayer membrane. This review summarizes recent results, which establish amphiphilic calixarenes as a new class of biocompatible and non-cytotoxic counterion activators with very high transport activities at nanomolar concentrations. We also include a brief summary of fluorescence-based assays with large unilamellar vesicles (LUVs) to investigate counterion-activated transport. Current methods use liposome-encapsulated, supramolecular host-dye reporter pairs including calixarenes, which provide new mechanistic insights and enable rapid in vitro identification of suitable activators. Taken together, amphiphilic calixarenes are currently emerging as prime candidates for counterion activation of membrane transport, which are highly modifiable and can be specifically tailored towards different cargoes and membrane types.
期刊介绍:
The fledgling State of Israel began to publish its scientific activity in 1951 under the general heading of Bulletin of the Research Council of Israel, which quickly split into sections to accommodate various fields in the growing academic community. In 1963, the Bulletin ceased publication and independent journals were born, with Section A becoming the new Israel Journal of Chemistry.
The Israel Journal of Chemistry is the official journal of the Israel Chemical Society. Effective from Volume 50 (2010) it is published by Wiley-VCH.
The Israel Journal of Chemistry is an international and peer-reviewed publication forum for Special Issues on timely research topics in all fields of chemistry: from biochemistry through organic and inorganic chemistry to polymer, physical and theoretical chemistry, including all interdisciplinary topics. Each topical issue is edited by one or several Guest Editors and primarily contains invited Review articles. Communications and Full Papers may be published occasionally, if they fit with the quality standards of the journal. The publication language is English and the journal is published twelve times a year.