与椭圆曲线同源准则相关的定量上界

IF 0.8 3区 数学 Q2 MATHEMATICS Bulletin of the London Mathematical Society Pub Date : 2024-05-23 DOI:10.1112/blms.13091
Alina Carmen Cojocaru, Auden Hinz, Tian Wang
{"title":"与椭圆曲线同源准则相关的定量上界","authors":"Alina Carmen Cojocaru,&nbsp;Auden Hinz,&nbsp;Tian Wang","doi":"10.1112/blms.13091","DOIUrl":null,"url":null,"abstract":"<p>For <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <annotation>$E_1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n <annotation>$E_2$</annotation>\n </semantics></math> elliptic curves defined over a number field <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>, without complex multiplication, we consider the function <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mrow>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${\\mathcal {F}}_{E_1, E_2}(x)$</annotation>\n </semantics></math> counting nonzero prime ideals <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$\\mathfrak {p}$</annotation>\n </semantics></math> of the ring of integers of <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>, of good reduction for <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <annotation>$E_1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n <annotation>$E_2$</annotation>\n </semantics></math>, of norm at most <span></span><math>\n <semantics>\n <mi>x</mi>\n <annotation>$x$</annotation>\n </semantics></math>, and for which the Frobenius fields <span></span><math>\n <semantics>\n <mrow>\n <mi>Q</mi>\n <mo>(</mo>\n <msub>\n <mi>π</mi>\n <mi>p</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathbb {Q}(\\pi _{\\mathfrak {p}}(E_1))$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>Q</mi>\n <mo>(</mo>\n <msub>\n <mi>π</mi>\n <mi>p</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathbb {Q}(\\pi _{\\mathfrak {p}}(E_2))$</annotation>\n </semantics></math> are equal. Motivated by an isogeny criterion of Kulkarni, Patankar, and Rajan, which states that <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <annotation>$E_1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n <annotation>$E_2$</annotation>\n </semantics></math> are not potentially isogenous if and only if <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mrow>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mo>o</mo>\n <mfenced>\n <mfrac>\n <mi>x</mi>\n <mrow>\n <mi>log</mi>\n <mi>x</mi>\n </mrow>\n </mfrac>\n </mfenced>\n </mrow>\n <annotation>${\\mathcal {F}}_{E_1, E_2}(x) = \\operatorname{o}\\left(\\frac{x}{\\operatorname{log}x}\\right)$</annotation>\n </semantics></math>, we investigate the growth in <span></span><math>\n <semantics>\n <mi>x</mi>\n <annotation>$x$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mrow>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${\\mathcal {F}}_{E_1, E_2}(x)$</annotation>\n </semantics></math>. We prove that if <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <annotation>$E_1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n <annotation>$E_2$</annotation>\n </semantics></math> are not potentially isogenous, then there exist positive constants <span></span><math>\n <semantics>\n <mrow>\n <mi>κ</mi>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\kappa (E_1, E_2, K)$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>κ</mi>\n <mo>′</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\kappa ^{\\prime }(E_1, E_2, K)$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>κ</mi>\n <mrow>\n <mo>′</mo>\n <mo>′</mo>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\kappa ^{\\prime \\prime }(E_1, E_2, K)$</annotation>\n </semantics></math> such that the following bounds hold: (i) <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mrow>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo>&lt;</mo>\n <mi>κ</mi>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <mfrac>\n <mrow>\n <mi>x</mi>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>log</mi>\n <mi>log</mi>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mfrac>\n <mn>1</mn>\n <mn>9</mn>\n </mfrac>\n </msup>\n </mrow>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>log</mi>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mfrac>\n <mn>19</mn>\n <mn>18</mn>\n </mfrac>\n </msup>\n </mfrac>\n </mrow>\n <annotation>${\\mathcal {F}}_{E_1, E_2}(x) &amp;lt; \\kappa (E_1, E_2, K) \\frac{ x (\\operatorname{log}\\operatorname{log}x)^{\\frac{1}{9}}}{ (\\operatorname{log}x)^{\\frac{19}{18}}}$</annotation>\n </semantics></math>; (ii) <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mrow>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo>&lt;</mo>\n <msup>\n <mi>κ</mi>\n <mo>′</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <mfrac>\n <msup>\n <mi>x</mi>\n <mfrac>\n <mn>6</mn>\n <mn>7</mn>\n </mfrac>\n </msup>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>log</mi>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mfrac>\n <mn>5</mn>\n <mn>7</mn>\n </mfrac>\n </msup>\n </mfrac>\n </mrow>\n <annotation>${\\mathcal {F}}_{E_1, E_2}(x) &amp;lt; \\kappa ^{\\prime }(E_1, E_2, K) \\frac{ x^{\\frac{6}{7}}}{ (\\operatorname{log}x)^{\\frac{5}{7}}}$</annotation>\n </semantics></math> under the Generalized Riemann Hypothesis for Dedekind zeta functions (GRH); (iii) <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mrow>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo>&lt;</mo>\n <msup>\n <mi>κ</mi>\n <mrow>\n <mo>′</mo>\n <mo>′</mo>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>E</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <msup>\n <mi>x</mi>\n <mfrac>\n <mn>2</mn>\n <mn>3</mn>\n </mfrac>\n </msup>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>log</mi>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mfrac>\n <mn>1</mn>\n <mn>3</mn>\n </mfrac>\n </msup>\n </mrow>\n <annotation>${\\mathcal {F}}_{E_1, E_2}(x) &amp;lt; \\kappa ^{\\prime \\prime }(E_1, E_2, K) x^{\\frac{2}{3}} (\\operatorname{log}x)^{\\frac{1}{3}}$</annotation>\n </semantics></math> under GRH, Artin's Holomorphy Conjecture for the Artin <span></span><math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math>-functions of number field extensions, and a Pair Correlation Conjecture for the zeros of the Artin <span></span><math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math>-functions of number field extensions.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2661-2679"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13091","citationCount":"0","resultStr":"{\"title\":\"Quantitative upper bounds related to an isogeny criterion for elliptic curves\",\"authors\":\"Alina Carmen Cojocaru,&nbsp;Auden Hinz,&nbsp;Tian Wang\",\"doi\":\"10.1112/blms.13091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For <span></span><math>\\n <semantics>\\n <msub>\\n <mi>E</mi>\\n <mn>1</mn>\\n </msub>\\n <annotation>$E_1$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>E</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$E_2$</annotation>\\n </semantics></math> elliptic curves defined over a number field <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math>, without complex multiplication, we consider the function <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n <mrow>\\n <msub>\\n <mi>E</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>E</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>${\\\\mathcal {F}}_{E_1, E_2}(x)$</annotation>\\n </semantics></math> counting nonzero prime ideals <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$\\\\mathfrak {p}$</annotation>\\n </semantics></math> of the ring of integers of <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math>, of good reduction for <span></span><math>\\n <semantics>\\n <msub>\\n <mi>E</mi>\\n <mn>1</mn>\\n </msub>\\n <annotation>$E_1$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>E</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$E_2$</annotation>\\n </semantics></math>, of norm at most <span></span><math>\\n <semantics>\\n <mi>x</mi>\\n <annotation>$x$</annotation>\\n </semantics></math>, and for which the Frobenius fields <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Q</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>π</mi>\\n <mi>p</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>E</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathbb {Q}(\\\\pi _{\\\\mathfrak {p}}(E_1))$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Q</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>π</mi>\\n <mi>p</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>E</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathbb {Q}(\\\\pi _{\\\\mathfrak {p}}(E_2))$</annotation>\\n </semantics></math> are equal. Motivated by an isogeny criterion of Kulkarni, Patankar, and Rajan, which states that <span></span><math>\\n <semantics>\\n <msub>\\n <mi>E</mi>\\n <mn>1</mn>\\n </msub>\\n <annotation>$E_1$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>E</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$E_2$</annotation>\\n </semantics></math> are not potentially isogenous if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n <mrow>\\n <msub>\\n <mi>E</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>E</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mo>o</mo>\\n <mfenced>\\n <mfrac>\\n <mi>x</mi>\\n <mrow>\\n <mi>log</mi>\\n <mi>x</mi>\\n </mrow>\\n </mfrac>\\n </mfenced>\\n </mrow>\\n <annotation>${\\\\mathcal {F}}_{E_1, E_2}(x) = \\\\operatorname{o}\\\\left(\\\\frac{x}{\\\\operatorname{log}x}\\\\right)$</annotation>\\n </semantics></math>, we investigate the growth in <span></span><math>\\n <semantics>\\n <mi>x</mi>\\n <annotation>$x$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n <mrow>\\n <msub>\\n <mi>E</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>E</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>${\\\\mathcal {F}}_{E_1, E_2}(x)$</annotation>\\n </semantics></math>. We prove that if <span></span><math>\\n <semantics>\\n <msub>\\n <mi>E</mi>\\n <mn>1</mn>\\n </msub>\\n <annotation>$E_1$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>E</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$E_2$</annotation>\\n </semantics></math> are not potentially isogenous, then there exist positive constants <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>κ</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>E</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>E</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>,</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\kappa (E_1, E_2, K)$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>κ</mi>\\n <mo>′</mo>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>E</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>E</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>,</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\kappa ^{\\\\prime }(E_1, E_2, K)$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>κ</mi>\\n <mrow>\\n <mo>′</mo>\\n <mo>′</mo>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>E</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>E</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>,</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\kappa ^{\\\\prime \\\\prime }(E_1, E_2, K)$</annotation>\\n </semantics></math> such that the following bounds hold: (i) <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n <mrow>\\n <msub>\\n <mi>E</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>E</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>&lt;</mo>\\n <mi>κ</mi>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>E</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>E</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>,</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <mfrac>\\n <mrow>\\n <mi>x</mi>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>log</mi>\\n <mi>log</mi>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <mfrac>\\n <mn>1</mn>\\n <mn>9</mn>\\n </mfrac>\\n </msup>\\n </mrow>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>log</mi>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <mfrac>\\n <mn>19</mn>\\n <mn>18</mn>\\n </mfrac>\\n </msup>\\n </mfrac>\\n </mrow>\\n <annotation>${\\\\mathcal {F}}_{E_1, E_2}(x) &amp;lt; \\\\kappa (E_1, E_2, K) \\\\frac{ x (\\\\operatorname{log}\\\\operatorname{log}x)^{\\\\frac{1}{9}}}{ (\\\\operatorname{log}x)^{\\\\frac{19}{18}}}$</annotation>\\n </semantics></math>; (ii) <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n <mrow>\\n <msub>\\n <mi>E</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>E</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>&lt;</mo>\\n <msup>\\n <mi>κ</mi>\\n <mo>′</mo>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>E</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>E</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>,</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <mfrac>\\n <msup>\\n <mi>x</mi>\\n <mfrac>\\n <mn>6</mn>\\n <mn>7</mn>\\n </mfrac>\\n </msup>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>log</mi>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <mfrac>\\n <mn>5</mn>\\n <mn>7</mn>\\n </mfrac>\\n </msup>\\n </mfrac>\\n </mrow>\\n <annotation>${\\\\mathcal {F}}_{E_1, E_2}(x) &amp;lt; \\\\kappa ^{\\\\prime }(E_1, E_2, K) \\\\frac{ x^{\\\\frac{6}{7}}}{ (\\\\operatorname{log}x)^{\\\\frac{5}{7}}}$</annotation>\\n </semantics></math> under the Generalized Riemann Hypothesis for Dedekind zeta functions (GRH); (iii) <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n <mrow>\\n <msub>\\n <mi>E</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>E</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>&lt;</mo>\\n <msup>\\n <mi>κ</mi>\\n <mrow>\\n <mo>′</mo>\\n <mo>′</mo>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>E</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>E</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>,</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <msup>\\n <mi>x</mi>\\n <mfrac>\\n <mn>2</mn>\\n <mn>3</mn>\\n </mfrac>\\n </msup>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>log</mi>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <mfrac>\\n <mn>1</mn>\\n <mn>3</mn>\\n </mfrac>\\n </msup>\\n </mrow>\\n <annotation>${\\\\mathcal {F}}_{E_1, E_2}(x) &amp;lt; \\\\kappa ^{\\\\prime \\\\prime }(E_1, E_2, K) x^{\\\\frac{2}{3}} (\\\\operatorname{log}x)^{\\\\frac{1}{3}}$</annotation>\\n </semantics></math> under GRH, Artin's Holomorphy Conjecture for the Artin <span></span><math>\\n <semantics>\\n <mi>L</mi>\\n <annotation>$L$</annotation>\\n </semantics></math>-functions of number field extensions, and a Pair Correlation Conjecture for the zeros of the Artin <span></span><math>\\n <semantics>\\n <mi>L</mi>\\n <annotation>$L$</annotation>\\n </semantics></math>-functions of number field extensions.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 8\",\"pages\":\"2661-2679\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13091\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13091\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13091","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

For E 1 $E_1$ and E 2 $E_2$ elliptic curves defined over a number field K $K$ , without complex multiplication, we consider the function F E 1 , E 2 ( x ) ${\mathcal {F}}_{E_1, E_2}(x)$ counting nonzero prime ideals p $\mathfrak {p}$ of the ring of integers of K $K$ , of good reduction for E 1 $E_1$ and E 2 $E_2$ , of norm at most x $x$ , and for which the Frobenius fields Q ( π p ( E 1 ) ) $\mathbb {Q}(\pi _{\mathfrak {p}}(E_1))$ and Q ( π p ( E 2 ) ) $\mathbb {Q}(\pi _{\mathfrak {p}}(E_2))$ are equal.受 Kulkarni、Patankar 和 Rajan 的同源准则的启发,该准则指出,当且仅当 F E 1 , E 2 ( x ) = o x log x $\{mathcal {F}}_{E_1, E_2}(x) = \operatorname{o}\left(\frac{x}\{operatorname{log}x}\right)$ 时,E 1 $E_1$ 和 E 2 $E_2$ 才可能不是同源的,因此我们研究 F E 1 , E 2 ( x ) ${mathcal {F}}_{E_1, E_2}(x)$ 在 x $x$ 中的增长。 For E 1 $E_1$ and E 2 $E_2$ elliptic curves defined over a number field K $K$ , without complex multiplication, we consider the function F E 1 , E 2 ( x ) ${\mathcal {F}}_{E_1, E_2}(x)$ counting nonzero prime ideals p $\mathfrak {p}$ of the ring of integers of K $K$ , of good reduction for E 1 $E_1$ and E 2 $E_2$ , of norm at most x $x$ , and for which the Frobenius fields Q ( π p ( E 1 ) ) $\mathbb {Q}(\pi _{\mathfrak {p}}(E_1))$ and Q ( π p ( E 2 ) ) $\mathbb {Q}(\pi _{\mathfrak {p}}(E_2))$ are equal.库尔卡尼、帕坦卡尔和拉詹的同源准则指出,当且仅当 F E 1 , E 2 ( x ) = o x log x $\{mathcal {F}}_{E_1, E_2}(x) = \operatorname{o}\left(\frac{x}\{operatorname{log}x}\right)$ 时,E 1 $E_1$ 和 E 2 $E_2$ 才可能不是同源的,受此激励,我们研究了 F E 1 , E 2 ( x ) ${mathcal {F}}_{E_1, E_2}(x)$ 在 x $x$ 中的增长。我们证明,如果 E 1 $E_1$ 和 E 2 $E_2$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantitative upper bounds related to an isogeny criterion for elliptic curves

For E 1 $E_1$ and E 2 $E_2$ elliptic curves defined over a number field K $K$ , without complex multiplication, we consider the function F E 1 , E 2 ( x ) ${\mathcal {F}}_{E_1, E_2}(x)$ counting nonzero prime ideals p $\mathfrak {p}$ of the ring of integers of K $K$ , of good reduction for E 1 $E_1$ and E 2 $E_2$ , of norm at most x $x$ , and for which the Frobenius fields Q ( π p ( E 1 ) ) $\mathbb {Q}(\pi _{\mathfrak {p}}(E_1))$ and Q ( π p ( E 2 ) ) $\mathbb {Q}(\pi _{\mathfrak {p}}(E_2))$ are equal. Motivated by an isogeny criterion of Kulkarni, Patankar, and Rajan, which states that E 1 $E_1$ and E 2 $E_2$ are not potentially isogenous if and only if F E 1 , E 2 ( x ) = o x log x ${\mathcal {F}}_{E_1, E_2}(x) = \operatorname{o}\left(\frac{x}{\operatorname{log}x}\right)$ , we investigate the growth in x $x$ of F E 1 , E 2 ( x ) ${\mathcal {F}}_{E_1, E_2}(x)$ . We prove that if E 1 $E_1$ and E 2 $E_2$ are not potentially isogenous, then there exist positive constants κ ( E 1 , E 2 , K ) $\kappa (E_1, E_2, K)$ , κ ( E 1 , E 2 , K ) $\kappa ^{\prime }(E_1, E_2, K)$ , and κ ( E 1 , E 2 , K ) $\kappa ^{\prime \prime }(E_1, E_2, K)$ such that the following bounds hold: (i) F E 1 , E 2 ( x ) < κ ( E 1 , E 2 , K ) x ( log log x ) 1 9 ( log x ) 19 18 ${\mathcal {F}}_{E_1, E_2}(x) &lt; \kappa (E_1, E_2, K) \frac{ x (\operatorname{log}\operatorname{log}x)^{\frac{1}{9}}}{ (\operatorname{log}x)^{\frac{19}{18}}}$ ; (ii) F E 1 , E 2 ( x ) < κ ( E 1 , E 2 , K ) x 6 7 ( log x ) 5 7 ${\mathcal {F}}_{E_1, E_2}(x) &lt; \kappa ^{\prime }(E_1, E_2, K) \frac{ x^{\frac{6}{7}}}{ (\operatorname{log}x)^{\frac{5}{7}}}$ under the Generalized Riemann Hypothesis for Dedekind zeta functions (GRH); (iii) F E 1 , E 2 ( x ) < κ ( E 1 , E 2 , K ) x 2 3 ( log x ) 1 3 ${\mathcal {F}}_{E_1, E_2}(x) &lt; \kappa ^{\prime \prime }(E_1, E_2, K) x^{\frac{2}{3}} (\operatorname{log}x)^{\frac{1}{3}}$ under GRH, Artin's Holomorphy Conjecture for the Artin L $L$ -functions of number field extensions, and a Pair Correlation Conjecture for the zeros of the Artin L $L$ -functions of number field extensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
期刊最新文献
Issue Information The covariant functoriality of graph algebras Issue Information On a Galois property of fields generated by the torsion of an abelian variety Cross-ratio degrees and triangulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1