{"title":"通过加入 5d 金属钽减缓钠离子电池 O3-NaNi1/3Fe1/3Mn1/3O2 层状氧化物阴极的电压衰减","authors":"Shuai Huang, Yuanyuan Sun, Tao Yuan, Haiying Che, Qinfeng Zheng, Yixiao Zhang, Pengzhi Li, Jian Qiu, Yuepeng Pang, Junhe Yang, Zi-Feng Ma, Shiyou Zheng","doi":"10.1002/cnl2.136","DOIUrl":null,"url":null,"abstract":"<p>The cycling stability of O3-type NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> (NFM) as a commercial cathode material for sodium ion batteries (SIBs) is still a challenge. In this study, the Ni/Fe/Mn elements are replaced successfully with tantalum (Ta) in the NFM lattice, which generated additional delocalized electrons and enhanced the binding ability between the transition metal and oxygen, resulting in suppressed lattice distortion during charging and discharging. This caused significant mitigation of voltage decay and improved cycle stability within the potential range of 2.0–4.2 V. The optimized Na(Ni<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>)<sub>0.97</sub>Ta<sub>0.03</sub>O<sub>2</sub> sample achieved a reversible capacity of 162.6 mAh g<sup>−1</sup> at a current rate of 0.1 C and 73.2 mAh g<sup>−1</sup> at a high rate of 10 C. Additionally, the average charge/discharge potential retention reached 98% after 100 cycles, significantly mitigating the voltage decay. This work demonstrates a significant contribution towards the practical utilization of NFM cathodes in the SIBs energy storage field.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 4","pages":"584-596"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.136","citationCount":"0","resultStr":"{\"title\":\"Mitigating voltage decay of O3-NaNi1/3Fe1/3Mn1/3O2 layered oxide cathode for sodium-ion batteries by incorporation of 5d metal tantalum\",\"authors\":\"Shuai Huang, Yuanyuan Sun, Tao Yuan, Haiying Che, Qinfeng Zheng, Yixiao Zhang, Pengzhi Li, Jian Qiu, Yuepeng Pang, Junhe Yang, Zi-Feng Ma, Shiyou Zheng\",\"doi\":\"10.1002/cnl2.136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The cycling stability of O3-type NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> (NFM) as a commercial cathode material for sodium ion batteries (SIBs) is still a challenge. In this study, the Ni/Fe/Mn elements are replaced successfully with tantalum (Ta) in the NFM lattice, which generated additional delocalized electrons and enhanced the binding ability between the transition metal and oxygen, resulting in suppressed lattice distortion during charging and discharging. This caused significant mitigation of voltage decay and improved cycle stability within the potential range of 2.0–4.2 V. The optimized Na(Ni<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>)<sub>0.97</sub>Ta<sub>0.03</sub>O<sub>2</sub> sample achieved a reversible capacity of 162.6 mAh g<sup>−1</sup> at a current rate of 0.1 C and 73.2 mAh g<sup>−1</sup> at a high rate of 10 C. Additionally, the average charge/discharge potential retention reached 98% after 100 cycles, significantly mitigating the voltage decay. This work demonstrates a significant contribution towards the practical utilization of NFM cathodes in the SIBs energy storage field.</p>\",\"PeriodicalId\":100214,\"journal\":{\"name\":\"Carbon Neutralization\",\"volume\":\"3 4\",\"pages\":\"584-596\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.136\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Neutralization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
O3型NaNi1/3Fe1/3Mn1/3O2(NFM)作为钠离子电池(SIB)的商用正极材料,其循环稳定性仍然是一个挑战。在这项研究中,钽(Ta)成功取代了 NFM 晶格中的镍/铁/锰元素,从而产生了额外的脱ocal电子,增强了过渡金属与氧的结合能力,从而抑制了充放电过程中的晶格畸变。这大大缓解了电压衰减,提高了 2.0-4.2 V 电位范围内的循环稳定性。经过优化的 Na(Ni1/3Fe1/3Mn1/3)0.97Ta0.03O2 样品在 0.1 C 电流速率下的可逆容量为 162.6 mAh g-1,在 10 C 高电流速率下的可逆容量为 73.2 mAh g-1。此外,经过 100 次循环后,平均充放电电位保持率达到 98%,显著降低了电压衰减。这项研究为在 SIB 储能领域实际利用 NFM 阴极做出了重大贡献。
Mitigating voltage decay of O3-NaNi1/3Fe1/3Mn1/3O2 layered oxide cathode for sodium-ion batteries by incorporation of 5d metal tantalum
The cycling stability of O3-type NaNi1/3Fe1/3Mn1/3O2 (NFM) as a commercial cathode material for sodium ion batteries (SIBs) is still a challenge. In this study, the Ni/Fe/Mn elements are replaced successfully with tantalum (Ta) in the NFM lattice, which generated additional delocalized electrons and enhanced the binding ability between the transition metal and oxygen, resulting in suppressed lattice distortion during charging and discharging. This caused significant mitigation of voltage decay and improved cycle stability within the potential range of 2.0–4.2 V. The optimized Na(Ni1/3Fe1/3Mn1/3)0.97Ta0.03O2 sample achieved a reversible capacity of 162.6 mAh g−1 at a current rate of 0.1 C and 73.2 mAh g−1 at a high rate of 10 C. Additionally, the average charge/discharge potential retention reached 98% after 100 cycles, significantly mitigating the voltage decay. This work demonstrates a significant contribution towards the practical utilization of NFM cathodes in the SIBs energy storage field.