通过生成式对抗网络模拟消费者交易

Sergiy Tkachuk, Szymon Łukasik, Anna Wróblewska
{"title":"通过生成式对抗网络模拟消费者交易","authors":"Sergiy Tkachuk, Szymon Łukasik, Anna Wróblewska","doi":"arxiv-2408.03655","DOIUrl":null,"url":null,"abstract":"In the rapidly evolving domain of large-scale retail data systems,\nenvisioning and simulating future consumer transactions has become a crucial\narea of interest. It offers significant potential to fortify demand forecasting\nand fine-tune inventory management. This paper presents an innovative\napplication of Generative Adversarial Networks (GANs) to generate synthetic\nretail transaction data, specifically focusing on a novel system architecture\nthat combines consumer behavior modeling with stock-keeping unit (SKU)\navailability constraints to address real-world assortment optimization\nchallenges. We diverge from conventional methodologies by integrating SKU data\ninto our GAN architecture and using more sophisticated embedding methods (e.g.,\nhyper-graphs). This design choice enables our system to generate not only\nsimulated consumer purchase behaviors but also reflects the dynamic interplay\nbetween consumer behavior and SKU availability -- an aspect often overlooked,\namong others, because of data scarcity in legacy retail simulation models. Our\nGAN model generates transactions under stock constraints, pioneering a\nresourceful experimental system with practical implications for real-world\nretail operation and strategy. Preliminary results demonstrate enhanced realism\nin simulated transactions measured by comparing generated items with real ones\nusing methods employed earlier in related studies. This underscores the\npotential for more accurate predictive modeling.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"183 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consumer Transactions Simulation through Generative Adversarial Networks\",\"authors\":\"Sergiy Tkachuk, Szymon Łukasik, Anna Wróblewska\",\"doi\":\"arxiv-2408.03655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the rapidly evolving domain of large-scale retail data systems,\\nenvisioning and simulating future consumer transactions has become a crucial\\narea of interest. It offers significant potential to fortify demand forecasting\\nand fine-tune inventory management. This paper presents an innovative\\napplication of Generative Adversarial Networks (GANs) to generate synthetic\\nretail transaction data, specifically focusing on a novel system architecture\\nthat combines consumer behavior modeling with stock-keeping unit (SKU)\\navailability constraints to address real-world assortment optimization\\nchallenges. We diverge from conventional methodologies by integrating SKU data\\ninto our GAN architecture and using more sophisticated embedding methods (e.g.,\\nhyper-graphs). This design choice enables our system to generate not only\\nsimulated consumer purchase behaviors but also reflects the dynamic interplay\\nbetween consumer behavior and SKU availability -- an aspect often overlooked,\\namong others, because of data scarcity in legacy retail simulation models. Our\\nGAN model generates transactions under stock constraints, pioneering a\\nresourceful experimental system with practical implications for real-world\\nretail operation and strategy. Preliminary results demonstrate enhanced realism\\nin simulated transactions measured by comparing generated items with real ones\\nusing methods employed earlier in related studies. This underscores the\\npotential for more accurate predictive modeling.\",\"PeriodicalId\":501294,\"journal\":{\"name\":\"arXiv - QuantFin - Computational Finance\",\"volume\":\"183 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在快速发展的大规模零售数据系统领域,设想和模拟未来的消费者交易已成为一个重要的关注领域。它为加强需求预测和微调库存管理提供了巨大的潜力。本文介绍了生成对抗网络(GANs)在生成合成零售交易数据方面的创新应用,特别关注一种新颖的系统架构,该架构将消费者行为建模与库存单位(SKU)可用性约束相结合,以解决现实世界中的分类优化难题。与传统方法不同的是,我们将 SKU 数据整合到我们的 GAN 架构中,并使用更复杂的嵌入方法(如超图)。这种设计选择使我们的系统不仅能生成模拟的消费者购买行为,还能反映消费者行为与 SKU 可用性之间的动态相互作用,而由于传统零售模拟模型中数据稀缺等原因,这一点常常被忽视。我们的 GAN 模型在库存约束条件下生成交易,开创了一个资源丰富的实验系统,对现实世界的零售运营和战略具有实际意义。初步结果表明,通过比较生成的商品和真实商品,并使用相关研究中早期使用的方法,模拟交易的真实性得到了增强。这凸显了更精确预测建模的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Consumer Transactions Simulation through Generative Adversarial Networks
In the rapidly evolving domain of large-scale retail data systems, envisioning and simulating future consumer transactions has become a crucial area of interest. It offers significant potential to fortify demand forecasting and fine-tune inventory management. This paper presents an innovative application of Generative Adversarial Networks (GANs) to generate synthetic retail transaction data, specifically focusing on a novel system architecture that combines consumer behavior modeling with stock-keeping unit (SKU) availability constraints to address real-world assortment optimization challenges. We diverge from conventional methodologies by integrating SKU data into our GAN architecture and using more sophisticated embedding methods (e.g., hyper-graphs). This design choice enables our system to generate not only simulated consumer purchase behaviors but also reflects the dynamic interplay between consumer behavior and SKU availability -- an aspect often overlooked, among others, because of data scarcity in legacy retail simulation models. Our GAN model generates transactions under stock constraints, pioneering a resourceful experimental system with practical implications for real-world retail operation and strategy. Preliminary results demonstrate enhanced realism in simulated transactions measured by comparing generated items with real ones using methods employed earlier in related studies. This underscores the potential for more accurate predictive modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A deep primal-dual BSDE method for optimal stopping problems Robust financial calibration: a Bayesian approach for neural SDEs MANA-Net: Mitigating Aggregated Sentiment Homogenization with News Weighting for Enhanced Market Prediction QuantFactor REINFORCE: Mining Steady Formulaic Alpha Factors with Variance-bounded REINFORCE Signature of maturity in cryptocurrency volatility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1