基于先导的六边形星座信号失真补偿方案

IF 1.9 4区 计算机科学 Q3 TELECOMMUNICATIONS Wireless Personal Communications Pub Date : 2024-08-06 DOI:10.1007/s11277-024-11310-0
Keigo Uehara, Mamiko Inamori
{"title":"基于先导的六边形星座信号失真补偿方案","authors":"Keigo Uehara, Mamiko Inamori","doi":"10.1007/s11277-024-11310-0","DOIUrl":null,"url":null,"abstract":"<p>Quadrature Amplitude Modulation (QAM) is a multi-level modulation scheme applied to achieve high data transmission rates. In the 16-QAM scheme, high Peak-to-Average Ratio (PAPR) is an issue as wireless communication devices are required to be small with high power efficiency. To resolve this issue, hexagonal constellation symbol mapping has been proposed to reduce the PAPR. In a real environment, Orthogonal Frequency Division Multiplexing (OFDM) systems are sensitive to signal distortions such as multipath channel and frequency offsets. When the pilot signals are used to compensate the signal distortion, the combination of pilot signals and mapping need to be considered. The paper investigates the PAPR of the hexagonal constellations and examines the relationship between the PAPR and the interval of pilot signal in OFDM system. Bit Error Rate (BER) performance are evaluated with computer simulations.</p>","PeriodicalId":23827,"journal":{"name":"Wireless Personal Communications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pilot-Based Compensation Scheme for Signal Distortion with Hexagonal Constellation\",\"authors\":\"Keigo Uehara, Mamiko Inamori\",\"doi\":\"10.1007/s11277-024-11310-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quadrature Amplitude Modulation (QAM) is a multi-level modulation scheme applied to achieve high data transmission rates. In the 16-QAM scheme, high Peak-to-Average Ratio (PAPR) is an issue as wireless communication devices are required to be small with high power efficiency. To resolve this issue, hexagonal constellation symbol mapping has been proposed to reduce the PAPR. In a real environment, Orthogonal Frequency Division Multiplexing (OFDM) systems are sensitive to signal distortions such as multipath channel and frequency offsets. When the pilot signals are used to compensate the signal distortion, the combination of pilot signals and mapping need to be considered. The paper investigates the PAPR of the hexagonal constellations and examines the relationship between the PAPR and the interval of pilot signal in OFDM system. Bit Error Rate (BER) performance are evaluated with computer simulations.</p>\",\"PeriodicalId\":23827,\"journal\":{\"name\":\"Wireless Personal Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wireless Personal Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11277-024-11310-0\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Personal Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11277-024-11310-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

正交调幅(QAM)是一种多级调制方案,用于实现高数据传输速率。在 16-QAM 方案中,由于要求无线通信设备体积小、能效高,因此峰均比 (PAPR) 高是一个问题。为了解决这个问题,有人提出了六边形星座符号映射来降低峰均比。在实际环境中,正交频分复用(OFDM)系统对多径信道和频率偏移等信号失真非常敏感。当使用先导信号补偿信号失真时,需要考虑先导信号和映射的组合。本文研究了六边形星座的 PAPR,并探讨了 OFDM 系统中 PAPR 与先导信号间隔之间的关系。通过计算机模拟对误码率 (BER) 性能进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pilot-Based Compensation Scheme for Signal Distortion with Hexagonal Constellation

Quadrature Amplitude Modulation (QAM) is a multi-level modulation scheme applied to achieve high data transmission rates. In the 16-QAM scheme, high Peak-to-Average Ratio (PAPR) is an issue as wireless communication devices are required to be small with high power efficiency. To resolve this issue, hexagonal constellation symbol mapping has been proposed to reduce the PAPR. In a real environment, Orthogonal Frequency Division Multiplexing (OFDM) systems are sensitive to signal distortions such as multipath channel and frequency offsets. When the pilot signals are used to compensate the signal distortion, the combination of pilot signals and mapping need to be considered. The paper investigates the PAPR of the hexagonal constellations and examines the relationship between the PAPR and the interval of pilot signal in OFDM system. Bit Error Rate (BER) performance are evaluated with computer simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wireless Personal Communications
Wireless Personal Communications 工程技术-电信学
CiteScore
5.80
自引率
9.10%
发文量
663
审稿时长
6.8 months
期刊介绍: The Journal on Mobile Communication and Computing ... Publishes tutorial, survey, and original research papers addressing mobile communications and computing; Investigates theoretical, engineering, and experimental aspects of radio communications, voice, data, images, and multimedia; Explores propagation, system models, speech and image coding, multiple access techniques, protocols, performance evaluation, radio local area networks, and networking and architectures, etc.; 98% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again. Wireless Personal Communications is an archival, peer reviewed, scientific and technical journal addressing mobile communications and computing. It investigates theoretical, engineering, and experimental aspects of radio communications, voice, data, images, and multimedia. A partial list of topics included in the journal is: propagation, system models, speech and image coding, multiple access techniques, protocols performance evaluation, radio local area networks, and networking and architectures. In addition to the above mentioned areas, the journal also accepts papers that deal with interdisciplinary aspects of wireless communications along with: big data and analytics, business and economy, society, and the environment. The journal features five principal types of papers: full technical papers, short papers, technical aspects of policy and standardization, letters offering new research thoughts and experimental ideas, and invited papers on important and emerging topics authored by renowned experts.
期刊最新文献
Capacity Analysis of a WLAN Cell Using VoWiFi Service for CBR Traffic Telecardiology in “New Normal” COVID-19: Efficacy of Neuro-Metaheuristic Session Key (NMSK) and Encryption Through Bipartite New State-of-Art Sharing A Robust Bias Reduction Method with Geometric Constraint for TDOA-Based Localization Variable Speed Drive Applications Performing Effectively with ANN Technique HE-AO: An Optimization-Based Encryption Approach for Data Delivery Model in A Multi-Tenant Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1