空中接入网络计算卸载的分布式稳健优化

Guanwang Jiang, Ziye Jia, Lijun He, Chao Dong, Qihui Wu, Zhu Han
{"title":"空中接入网络计算卸载的分布式稳健优化","authors":"Guanwang Jiang, Ziye Jia, Lijun He, Chao Dong, Qihui Wu, Zhu Han","doi":"arxiv-2408.02037","DOIUrl":null,"url":null,"abstract":"With the rapid increment of multiple users for data offloading and\ncomputation, it is challenging to guarantee the quality of service (QoS) in\nremote areas. To deal with the challenge, it is promising to combine aerial\naccess networks (AANs) with multi-access edge computing (MEC) equipments to\nprovide computation services with high QoS. However, as for uncertain data\nsizes of tasks, it is intractable to optimize the offloading decisions and the\naerial resources. Hence, in this paper, we consider the AAN to provide MEC\nservices for uncertain tasks. Specifically, we construct the uncertainty sets\nbased on historical data to characterize the possible probability distribution\nof the uncertain tasks. Then, based on the constructed uncertainty sets, we\nformulate a distributionally robust optimization problem to minimize the system\ndelay. Next,we relax the problem and reformulate it into a linear programming\nproblem. Accordingly, we design a MEC-based distributionally robust latency\noptimization algorithm. Finally, simulation results reveal that the proposed\nalgorithm achieves a superior balance between reducing system latency and\nminimizing energy consumption, as compared to other benchmark mechanisms in the\nexisting literature.","PeriodicalId":501280,"journal":{"name":"arXiv - CS - Networking and Internet Architecture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributionally Robust Optimization for Computation Offloading in Aerial Access Networks\",\"authors\":\"Guanwang Jiang, Ziye Jia, Lijun He, Chao Dong, Qihui Wu, Zhu Han\",\"doi\":\"arxiv-2408.02037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid increment of multiple users for data offloading and\\ncomputation, it is challenging to guarantee the quality of service (QoS) in\\nremote areas. To deal with the challenge, it is promising to combine aerial\\naccess networks (AANs) with multi-access edge computing (MEC) equipments to\\nprovide computation services with high QoS. However, as for uncertain data\\nsizes of tasks, it is intractable to optimize the offloading decisions and the\\naerial resources. Hence, in this paper, we consider the AAN to provide MEC\\nservices for uncertain tasks. Specifically, we construct the uncertainty sets\\nbased on historical data to characterize the possible probability distribution\\nof the uncertain tasks. Then, based on the constructed uncertainty sets, we\\nformulate a distributionally robust optimization problem to minimize the system\\ndelay. Next,we relax the problem and reformulate it into a linear programming\\nproblem. Accordingly, we design a MEC-based distributionally robust latency\\noptimization algorithm. Finally, simulation results reveal that the proposed\\nalgorithm achieves a superior balance between reducing system latency and\\nminimizing energy consumption, as compared to other benchmark mechanisms in the\\nexisting literature.\",\"PeriodicalId\":501280,\"journal\":{\"name\":\"arXiv - CS - Networking and Internet Architecture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Networking and Internet Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Networking and Internet Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着用于数据卸载和计算的多用户迅速增加,在偏远地区保证服务质量(QoS)面临挑战。为应对这一挑战,将空中接入网络(AAN)与多接入边缘计算(MEC)设备相结合,提供高 QoS 的计算服务是一种很有前景的方法。然而,由于任务的数据量不确定,优化卸载决策和空中资源的工作十分棘手。因此,本文考虑利用 AAN 为不确定任务提供 MEC 服务。具体来说,我们基于历史数据构建不确定性集,以描述不确定任务的可能概率分布。然后,基于构建的不确定性集,我们提出了一个分布稳健的优化问题,以最小化系统延迟。接下来,我们放松该问题,并将其重新表述为线性规划问题。相应地,我们设计了一种基于 MEC 的分布式鲁棒延迟优化算法。最后,仿真结果表明,与现有文献中的其他基准机制相比,所提出的算法在减少系统延迟和最小化能源消耗之间实现了出色的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributionally Robust Optimization for Computation Offloading in Aerial Access Networks
With the rapid increment of multiple users for data offloading and computation, it is challenging to guarantee the quality of service (QoS) in remote areas. To deal with the challenge, it is promising to combine aerial access networks (AANs) with multi-access edge computing (MEC) equipments to provide computation services with high QoS. However, as for uncertain data sizes of tasks, it is intractable to optimize the offloading decisions and the aerial resources. Hence, in this paper, we consider the AAN to provide MEC services for uncertain tasks. Specifically, we construct the uncertainty sets based on historical data to characterize the possible probability distribution of the uncertain tasks. Then, based on the constructed uncertainty sets, we formulate a distributionally robust optimization problem to minimize the system delay. Next,we relax the problem and reformulate it into a linear programming problem. Accordingly, we design a MEC-based distributionally robust latency optimization algorithm. Finally, simulation results reveal that the proposed algorithm achieves a superior balance between reducing system latency and minimizing energy consumption, as compared to other benchmark mechanisms in the existing literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CEF: Connecting Elaborate Federal QKD Networks Age-of-Information and Energy Optimization in Digital Twin Edge Networks Blockchain-Enabled IoV: Secure Communication and Trustworthy Decision-Making Micro-orchestration of RAN functions accelerated in FPGA SoC devices LoRa Communication for Agriculture 4.0: Opportunities, Challenges, and Future Directions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1