Karen S Ambrosen, Cecilie K Lemvigh, Mette Ø Nielsen, Birte Y Glenthøj, Warda T Syeda, Bjørn H Ebdrup
{"title":"使用面部表情计算机视觉评估抗精神病药物无效的首发精神病患者的症状领域和治疗反应。","authors":"Karen S Ambrosen, Cecilie K Lemvigh, Mette Ø Nielsen, Birte Y Glenthøj, Warda T Syeda, Bjørn H Ebdrup","doi":"10.1111/acps.13743","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Facial expressions are a core aspect of non-verbal communication. Reduced emotional expressiveness of the face is a common negative symptom of schizophrenia, however, quantifying negative symptoms can be clinically challenging and involves a considerable element of rater subjectivity. We used computer vision to investigate if (i) automated assessment of facial expressions captures negative as well as positive and general symptom domains, and (ii) if automated assessments are associated with treatment response in initially antipsychotic-naïve patients with first-episode psychosis.</p><p><strong>Method: </strong>We included 46 patients (mean age 25.4 (6.1); 65.2% males). Psychopathology was assessed at baseline and after 6 weeks of monotherapy with amisulpride using the Positive and Negative Syndrome Scale (PANSS). Baseline interview videos were recorded. Seventeen facial action units (AUs), that is, activation of muscles, from the Facial Action Coding System were extracted using OpenFace 2.0. A correlation matrix was calculated for each patient. Facial expressions were identified using spectral clustering at group-level. Associations between facial expressions and psychopathology were investigated using multiple linear regression.</p><p><strong>Results: </strong>Three clusters of facial expressions were identified related to different locations of the face. Cluster 1 was associated with positive and general symptoms at baseline, Cluster 2 was associated with all symptom domains, showing the strongest association with the negative domain, and Cluster 3 was only associated with general symptoms. Cluster 1 was significantly associated with the clinically rated improvement in positive and general symptoms after treatment, and Cluster 2 was significantly associated with clinical improvement in all domains.</p><p><strong>Conclusion: </strong>Using automated computer vision of facial expressions during PANSS interviews did not only capture negative symptoms but also combinations of the three overall domains of psychopathology. Moreover, automated assessments of facial expressions at baseline were associated with initial antipsychotic treatment response. The findings underscore the clinical relevance of facial expressions and motivate further investigations of computer vision in clinical psychiatry.</p>","PeriodicalId":108,"journal":{"name":"Acta Psychiatrica Scandinavica","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using computer vision of facial expressions to assess symptom domains and treatment response in antipsychotic-naïve patients with first-episode psychosis.\",\"authors\":\"Karen S Ambrosen, Cecilie K Lemvigh, Mette Ø Nielsen, Birte Y Glenthøj, Warda T Syeda, Bjørn H Ebdrup\",\"doi\":\"10.1111/acps.13743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Facial expressions are a core aspect of non-verbal communication. Reduced emotional expressiveness of the face is a common negative symptom of schizophrenia, however, quantifying negative symptoms can be clinically challenging and involves a considerable element of rater subjectivity. We used computer vision to investigate if (i) automated assessment of facial expressions captures negative as well as positive and general symptom domains, and (ii) if automated assessments are associated with treatment response in initially antipsychotic-naïve patients with first-episode psychosis.</p><p><strong>Method: </strong>We included 46 patients (mean age 25.4 (6.1); 65.2% males). Psychopathology was assessed at baseline and after 6 weeks of monotherapy with amisulpride using the Positive and Negative Syndrome Scale (PANSS). Baseline interview videos were recorded. Seventeen facial action units (AUs), that is, activation of muscles, from the Facial Action Coding System were extracted using OpenFace 2.0. A correlation matrix was calculated for each patient. Facial expressions were identified using spectral clustering at group-level. Associations between facial expressions and psychopathology were investigated using multiple linear regression.</p><p><strong>Results: </strong>Three clusters of facial expressions were identified related to different locations of the face. Cluster 1 was associated with positive and general symptoms at baseline, Cluster 2 was associated with all symptom domains, showing the strongest association with the negative domain, and Cluster 3 was only associated with general symptoms. Cluster 1 was significantly associated with the clinically rated improvement in positive and general symptoms after treatment, and Cluster 2 was significantly associated with clinical improvement in all domains.</p><p><strong>Conclusion: </strong>Using automated computer vision of facial expressions during PANSS interviews did not only capture negative symptoms but also combinations of the three overall domains of psychopathology. Moreover, automated assessments of facial expressions at baseline were associated with initial antipsychotic treatment response. The findings underscore the clinical relevance of facial expressions and motivate further investigations of computer vision in clinical psychiatry.</p>\",\"PeriodicalId\":108,\"journal\":{\"name\":\"Acta Psychiatrica Scandinavica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Psychiatrica Scandinavica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/acps.13743\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Psychiatrica Scandinavica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/acps.13743","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
Using computer vision of facial expressions to assess symptom domains and treatment response in antipsychotic-naïve patients with first-episode psychosis.
Background: Facial expressions are a core aspect of non-verbal communication. Reduced emotional expressiveness of the face is a common negative symptom of schizophrenia, however, quantifying negative symptoms can be clinically challenging and involves a considerable element of rater subjectivity. We used computer vision to investigate if (i) automated assessment of facial expressions captures negative as well as positive and general symptom domains, and (ii) if automated assessments are associated with treatment response in initially antipsychotic-naïve patients with first-episode psychosis.
Method: We included 46 patients (mean age 25.4 (6.1); 65.2% males). Psychopathology was assessed at baseline and after 6 weeks of monotherapy with amisulpride using the Positive and Negative Syndrome Scale (PANSS). Baseline interview videos were recorded. Seventeen facial action units (AUs), that is, activation of muscles, from the Facial Action Coding System were extracted using OpenFace 2.0. A correlation matrix was calculated for each patient. Facial expressions were identified using spectral clustering at group-level. Associations between facial expressions and psychopathology were investigated using multiple linear regression.
Results: Three clusters of facial expressions were identified related to different locations of the face. Cluster 1 was associated with positive and general symptoms at baseline, Cluster 2 was associated with all symptom domains, showing the strongest association with the negative domain, and Cluster 3 was only associated with general symptoms. Cluster 1 was significantly associated with the clinically rated improvement in positive and general symptoms after treatment, and Cluster 2 was significantly associated with clinical improvement in all domains.
Conclusion: Using automated computer vision of facial expressions during PANSS interviews did not only capture negative symptoms but also combinations of the three overall domains of psychopathology. Moreover, automated assessments of facial expressions at baseline were associated with initial antipsychotic treatment response. The findings underscore the clinical relevance of facial expressions and motivate further investigations of computer vision in clinical psychiatry.
期刊介绍:
Acta Psychiatrica Scandinavica acts as an international forum for the dissemination of information advancing the science and practice of psychiatry. In particular we focus on communicating frontline research to clinical psychiatrists and psychiatric researchers.
Acta Psychiatrica Scandinavica has traditionally been and remains a journal focusing predominantly on clinical psychiatry, but translational psychiatry is a topic of growing importance to our readers. Therefore, the journal welcomes submission of manuscripts based on both clinical- and more translational (e.g. preclinical and epidemiological) research. When preparing manuscripts based on translational studies for submission to Acta Psychiatrica Scandinavica, the authors should place emphasis on the clinical significance of the research question and the findings. Manuscripts based solely on preclinical research (e.g. animal models) are normally not considered for publication in the Journal.