Taylor S Thurston, Joshua C Weavil, Hsuan-Yu Wan, Mark A Supiano, Philip A Kithas, Markus Amann
{"title":"高血压会限制腿部血流并加剧男性运动时的神经肌肉疲劳","authors":"Taylor S Thurston, Joshua C Weavil, Hsuan-Yu Wan, Mark A Supiano, Philip A Kithas, Markus Amann","doi":"10.1152/ajpregu.00117.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with hypertension (HTN) are characterized by exaggerated vascular resistance and mean arterial pressure (MAP) and a compromised leg blood flow (Q<sub>L</sub>) response to exercise recruiting a small muscle mass. However, the impact of hypertension on peripheral hemodynamics and the development of neuromuscular fatigue during locomotor activities, which critically depends on Q<sub>L</sub>, remain unknown. Eight HTN (143 ± 11 mmHg/95 ± 6 mmHg; 45 ± 13 yr) and eight matched (age and activity) controls (120 ± 6 mmHg/77 ± 7 mmHg; CTRL) performed constant-load cycling exercise at 25, 50, and 75 W (for 4 min each) and at 165 ± 41 W (for 5 min). Exercise-induced locomotor muscle fatigue was quantified as the pre- to postexercise change in quadriceps twitch-torque (Δ<i>Q</i><sub>tw</sub>, peripheral fatigue) and voluntary activation (ΔVA%, central fatigue). Q<sub>L</sub> (Doppler ultrasound) and leg vascular conductance (LVC) were determined during cycling at 25, 50, and 75 W. Heart rate and ventilatory responses were recorded during all intensities. MAP during exercise was, on average, ∼21 mmHg higher (<i>P</i> = 0.002) and LVC ∼39% lower (<i>P</i> = 0.001) in HTN compared with CTRL. Q<sub>L</sub> was consistently between 20 and 30% lower (<i>P</i> = 0.004), and heart rate was significantly higher in HTN. Exercise-induced peripheral (Δ<i>Q</i><sub>tw</sub>: -53 ± 19% vs. -25 ± 23%) and central (ΔVA%: -7 ± 5% vs. -3 ± 2%) fatigue was significantly greater in HTN compared with CTRL. In addition to an exaggerated MAP, LVC and Q<sub>L</sub> were lower during exercise in HTN compared with CTRL. Given the critical role of Q<sub>L</sub> in determining the development of neuromuscular fatigue, these hemodynamic impairments likely accounted for the faster development of neuromuscular fatigue characterizing hypertensive individuals during locomotor exercise. <b>NEW & NOTEWORTHY</b> The impact of primary hypertension on the cardiovascular and neuromuscular fatigue response to locomotor exercise is unknown. We compared central and peripheral hemodynamics and the development of central and peripheral fatigue during cycling exercise in patients with stage I/II hypertension and age- and activity-matched healthy individuals. In addition to a significantly elevated blood pressure, hypertensive patients were, compared with their nonhypertensive counterparts, also characterized by considerable leg blood flow limitations and impaired neuromuscular fatigue resistance.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":" ","pages":"R517-R524"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563585/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hypertension restricts leg blood flow and aggravates neuromuscular fatigue during human locomotion in males.\",\"authors\":\"Taylor S Thurston, Joshua C Weavil, Hsuan-Yu Wan, Mark A Supiano, Philip A Kithas, Markus Amann\",\"doi\":\"10.1152/ajpregu.00117.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Patients with hypertension (HTN) are characterized by exaggerated vascular resistance and mean arterial pressure (MAP) and a compromised leg blood flow (Q<sub>L</sub>) response to exercise recruiting a small muscle mass. However, the impact of hypertension on peripheral hemodynamics and the development of neuromuscular fatigue during locomotor activities, which critically depends on Q<sub>L</sub>, remain unknown. Eight HTN (143 ± 11 mmHg/95 ± 6 mmHg; 45 ± 13 yr) and eight matched (age and activity) controls (120 ± 6 mmHg/77 ± 7 mmHg; CTRL) performed constant-load cycling exercise at 25, 50, and 75 W (for 4 min each) and at 165 ± 41 W (for 5 min). Exercise-induced locomotor muscle fatigue was quantified as the pre- to postexercise change in quadriceps twitch-torque (Δ<i>Q</i><sub>tw</sub>, peripheral fatigue) and voluntary activation (ΔVA%, central fatigue). Q<sub>L</sub> (Doppler ultrasound) and leg vascular conductance (LVC) were determined during cycling at 25, 50, and 75 W. Heart rate and ventilatory responses were recorded during all intensities. MAP during exercise was, on average, ∼21 mmHg higher (<i>P</i> = 0.002) and LVC ∼39% lower (<i>P</i> = 0.001) in HTN compared with CTRL. Q<sub>L</sub> was consistently between 20 and 30% lower (<i>P</i> = 0.004), and heart rate was significantly higher in HTN. Exercise-induced peripheral (Δ<i>Q</i><sub>tw</sub>: -53 ± 19% vs. -25 ± 23%) and central (ΔVA%: -7 ± 5% vs. -3 ± 2%) fatigue was significantly greater in HTN compared with CTRL. In addition to an exaggerated MAP, LVC and Q<sub>L</sub> were lower during exercise in HTN compared with CTRL. Given the critical role of Q<sub>L</sub> in determining the development of neuromuscular fatigue, these hemodynamic impairments likely accounted for the faster development of neuromuscular fatigue characterizing hypertensive individuals during locomotor exercise. <b>NEW & NOTEWORTHY</b> The impact of primary hypertension on the cardiovascular and neuromuscular fatigue response to locomotor exercise is unknown. We compared central and peripheral hemodynamics and the development of central and peripheral fatigue during cycling exercise in patients with stage I/II hypertension and age- and activity-matched healthy individuals. In addition to a significantly elevated blood pressure, hypertensive patients were, compared with their nonhypertensive counterparts, also characterized by considerable leg blood flow limitations and impaired neuromuscular fatigue resistance.</p>\",\"PeriodicalId\":7630,\"journal\":{\"name\":\"American journal of physiology. Regulatory, integrative and comparative physiology\",\"volume\":\" \",\"pages\":\"R517-R524\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563585/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Regulatory, integrative and comparative physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpregu.00117.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Regulatory, integrative and comparative physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/ajpregu.00117.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Hypertension restricts leg blood flow and aggravates neuromuscular fatigue during human locomotion in males.
Patients with hypertension (HTN) are characterized by exaggerated vascular resistance and mean arterial pressure (MAP) and a compromised leg blood flow (QL) response to exercise recruiting a small muscle mass. However, the impact of hypertension on peripheral hemodynamics and the development of neuromuscular fatigue during locomotor activities, which critically depends on QL, remain unknown. Eight HTN (143 ± 11 mmHg/95 ± 6 mmHg; 45 ± 13 yr) and eight matched (age and activity) controls (120 ± 6 mmHg/77 ± 7 mmHg; CTRL) performed constant-load cycling exercise at 25, 50, and 75 W (for 4 min each) and at 165 ± 41 W (for 5 min). Exercise-induced locomotor muscle fatigue was quantified as the pre- to postexercise change in quadriceps twitch-torque (ΔQtw, peripheral fatigue) and voluntary activation (ΔVA%, central fatigue). QL (Doppler ultrasound) and leg vascular conductance (LVC) were determined during cycling at 25, 50, and 75 W. Heart rate and ventilatory responses were recorded during all intensities. MAP during exercise was, on average, ∼21 mmHg higher (P = 0.002) and LVC ∼39% lower (P = 0.001) in HTN compared with CTRL. QL was consistently between 20 and 30% lower (P = 0.004), and heart rate was significantly higher in HTN. Exercise-induced peripheral (ΔQtw: -53 ± 19% vs. -25 ± 23%) and central (ΔVA%: -7 ± 5% vs. -3 ± 2%) fatigue was significantly greater in HTN compared with CTRL. In addition to an exaggerated MAP, LVC and QL were lower during exercise in HTN compared with CTRL. Given the critical role of QL in determining the development of neuromuscular fatigue, these hemodynamic impairments likely accounted for the faster development of neuromuscular fatigue characterizing hypertensive individuals during locomotor exercise. NEW & NOTEWORTHY The impact of primary hypertension on the cardiovascular and neuromuscular fatigue response to locomotor exercise is unknown. We compared central and peripheral hemodynamics and the development of central and peripheral fatigue during cycling exercise in patients with stage I/II hypertension and age- and activity-matched healthy individuals. In addition to a significantly elevated blood pressure, hypertensive patients were, compared with their nonhypertensive counterparts, also characterized by considerable leg blood flow limitations and impaired neuromuscular fatigue resistance.
期刊介绍:
The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology publishes original investigations that illuminate normal or abnormal regulation and integration of physiological mechanisms at all levels of biological organization, ranging from molecules to humans, including clinical investigations. Major areas of emphasis include regulation in genetically modified animals; model organisms; development and tissue plasticity; neurohumoral control of circulation and hypertension; local control of circulation; cardiac and renal integration; thirst and volume, electrolyte homeostasis; glucose homeostasis and energy balance; appetite and obesity; inflammation and cytokines; integrative physiology of pregnancy-parturition-lactation; and thermoregulation and adaptations to exercise and environmental stress.