Yushan Qiu, Wensheng Chen, Wai-Ki Ching, Hongmin Cai, Hao Jiang, Quan Zou
{"title":"AGML:基于图形的自适应多标签学习,用于预测 EMT 期间的 RBP 和 AS 事件关联。","authors":"Yushan Qiu, Wensheng Chen, Wai-Ki Ching, Hongmin Cai, Hao Jiang, Quan Zou","doi":"10.1109/TCBB.2024.3440913","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing evidence has indicated that RNA-binding proteins (RBPs) play an essential role in mediating alternative splicing (AS) events during epithelial-mesenchymal transition (EMT). However, due to the substantial cost and complexity of biological experiments, how AS events are regulated and influenced remains largely unknown. Thus, it is important to construct effective models for inferring hidden RBP-AS event associations during EMT process. In this paper, a novel and efficient model was developed to identify AS event-related candidate RBPs based on Adaptive Graph-based Multi-Label learning (AGML). In particular, we propose to adaptively learn a new affinity graph to capture the intrinsic structure of data for both RBPs and AS events. Multi-view similarity matrices are employed for maintaining the intrinsic structure and guiding the adaptive graph learning. We then simultaneously update the RBP and AS event associations that are predicted from both spaces by applying multi-label learning. The experimental results have shown that our AGML achieved AUC values of 0.9521 and 0.9873 by 5-fold and leave-one-out cross-validations, respectively, indicating the superiority and effectiveness of our proposed model. Furthermore, AGML can serve as an efficient and reliable tool for uncovering novel AS events-associated RBPs and is applicable for predicting the associations between other biological entities. The source code of AGML is available at https://github.com/yushanqiu/AGML.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"PP ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AGML: Adaptive Graph-based Multi-label Learning for Prediction of RBP and AS Event Associations During EMT.\",\"authors\":\"Yushan Qiu, Wensheng Chen, Wai-Ki Ching, Hongmin Cai, Hao Jiang, Quan Zou\",\"doi\":\"10.1109/TCBB.2024.3440913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Increasing evidence has indicated that RNA-binding proteins (RBPs) play an essential role in mediating alternative splicing (AS) events during epithelial-mesenchymal transition (EMT). However, due to the substantial cost and complexity of biological experiments, how AS events are regulated and influenced remains largely unknown. Thus, it is important to construct effective models for inferring hidden RBP-AS event associations during EMT process. In this paper, a novel and efficient model was developed to identify AS event-related candidate RBPs based on Adaptive Graph-based Multi-Label learning (AGML). In particular, we propose to adaptively learn a new affinity graph to capture the intrinsic structure of data for both RBPs and AS events. Multi-view similarity matrices are employed for maintaining the intrinsic structure and guiding the adaptive graph learning. We then simultaneously update the RBP and AS event associations that are predicted from both spaces by applying multi-label learning. The experimental results have shown that our AGML achieved AUC values of 0.9521 and 0.9873 by 5-fold and leave-one-out cross-validations, respectively, indicating the superiority and effectiveness of our proposed model. Furthermore, AGML can serve as an efficient and reliable tool for uncovering novel AS events-associated RBPs and is applicable for predicting the associations between other biological entities. The source code of AGML is available at https://github.com/yushanqiu/AGML.</p>\",\"PeriodicalId\":13344,\"journal\":{\"name\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TCBB.2024.3440913\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TCBB.2024.3440913","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
AGML: Adaptive Graph-based Multi-label Learning for Prediction of RBP and AS Event Associations During EMT.
Increasing evidence has indicated that RNA-binding proteins (RBPs) play an essential role in mediating alternative splicing (AS) events during epithelial-mesenchymal transition (EMT). However, due to the substantial cost and complexity of biological experiments, how AS events are regulated and influenced remains largely unknown. Thus, it is important to construct effective models for inferring hidden RBP-AS event associations during EMT process. In this paper, a novel and efficient model was developed to identify AS event-related candidate RBPs based on Adaptive Graph-based Multi-Label learning (AGML). In particular, we propose to adaptively learn a new affinity graph to capture the intrinsic structure of data for both RBPs and AS events. Multi-view similarity matrices are employed for maintaining the intrinsic structure and guiding the adaptive graph learning. We then simultaneously update the RBP and AS event associations that are predicted from both spaces by applying multi-label learning. The experimental results have shown that our AGML achieved AUC values of 0.9521 and 0.9873 by 5-fold and leave-one-out cross-validations, respectively, indicating the superiority and effectiveness of our proposed model. Furthermore, AGML can serve as an efficient and reliable tool for uncovering novel AS events-associated RBPs and is applicable for predicting the associations between other biological entities. The source code of AGML is available at https://github.com/yushanqiu/AGML.
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system