Priyanka Anand, Elvira D'Andrea, William Feldman, Shirley V Wang, Jun Liu, Gregory Brill, Elyse DiCesare, Kueiyu Joshua Lin
{"title":"用于识别 COVID-19 快速恶化高危患者的动态预后模型","authors":"Priyanka Anand, Elvira D'Andrea, William Feldman, Shirley V Wang, Jun Liu, Gregory Brill, Elyse DiCesare, Kueiyu Joshua Lin","doi":"10.1002/pds.5872","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We aimed to validate and, if performance was unsatisfactory, update the previously published prognostic model to predict clinical deterioration in patients hospitalized for COVID-19, using data following vaccine availability.</p><p><strong>Methods: </strong>Using electronic health records of patients ≥18 years, with laboratory-confirmed COVID-19, from a large care-delivery network in Massachusetts, USA, from March 2020 to November 2021, we tested the performance of the previously developed prediction model and updated the prediction model by incorporating data after availability of COVID-19 vaccines. We randomly divided data into development (70%) and validation (30%) cohorts. We built a model predicting worsening in a published severity scale in 24 h by LASSO regression and evaluated performance by c-statistic and Brier score.</p><p><strong>Results: </strong>Our study cohort consisted of 8185 patients (Development: 5730 patients [mean age: 62; 44% female] and Validation: 2455 patients [mean age: 62; 45% female]). The previously published model had suboptimal performance using data after November 2020 (N = 4973, c-statistic = 0.60. Brier score = 0.11). After retraining with the new data, the updated model included 38 predictors including 18 changing biomarkers. Patients hospitalized after Jun 1st, 2021 (when COVID-19 vaccines became widely available in Massachusetts) were younger and had fewer comorbidities than those hospitalized before. The c-statistic and Brier score were 0.77 and 0.13 in the development cohort, and 0.73 and 0.14 in the validation cohort.</p><p><strong>Conclusion: </strong>The characteristics of patients hospitalized for COVID-19 differed substantially over time. We developed a new dynamic model for rapid progression with satisfactory performance in the validation set.</p>","PeriodicalId":19782,"journal":{"name":"Pharmacoepidemiology and Drug Safety","volume":"33 8","pages":"e5872"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418916/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Dynamic Prognostic Model for Identifying Vulnerable COVID-19 Patients at High Risk of Rapid Deterioration.\",\"authors\":\"Priyanka Anand, Elvira D'Andrea, William Feldman, Shirley V Wang, Jun Liu, Gregory Brill, Elyse DiCesare, Kueiyu Joshua Lin\",\"doi\":\"10.1002/pds.5872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>We aimed to validate and, if performance was unsatisfactory, update the previously published prognostic model to predict clinical deterioration in patients hospitalized for COVID-19, using data following vaccine availability.</p><p><strong>Methods: </strong>Using electronic health records of patients ≥18 years, with laboratory-confirmed COVID-19, from a large care-delivery network in Massachusetts, USA, from March 2020 to November 2021, we tested the performance of the previously developed prediction model and updated the prediction model by incorporating data after availability of COVID-19 vaccines. We randomly divided data into development (70%) and validation (30%) cohorts. We built a model predicting worsening in a published severity scale in 24 h by LASSO regression and evaluated performance by c-statistic and Brier score.</p><p><strong>Results: </strong>Our study cohort consisted of 8185 patients (Development: 5730 patients [mean age: 62; 44% female] and Validation: 2455 patients [mean age: 62; 45% female]). The previously published model had suboptimal performance using data after November 2020 (N = 4973, c-statistic = 0.60. Brier score = 0.11). After retraining with the new data, the updated model included 38 predictors including 18 changing biomarkers. Patients hospitalized after Jun 1st, 2021 (when COVID-19 vaccines became widely available in Massachusetts) were younger and had fewer comorbidities than those hospitalized before. The c-statistic and Brier score were 0.77 and 0.13 in the development cohort, and 0.73 and 0.14 in the validation cohort.</p><p><strong>Conclusion: </strong>The characteristics of patients hospitalized for COVID-19 differed substantially over time. We developed a new dynamic model for rapid progression with satisfactory performance in the validation set.</p>\",\"PeriodicalId\":19782,\"journal\":{\"name\":\"Pharmacoepidemiology and Drug Safety\",\"volume\":\"33 8\",\"pages\":\"e5872\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418916/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacoepidemiology and Drug Safety\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pds.5872\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacoepidemiology and Drug Safety","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pds.5872","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
A Dynamic Prognostic Model for Identifying Vulnerable COVID-19 Patients at High Risk of Rapid Deterioration.
Purpose: We aimed to validate and, if performance was unsatisfactory, update the previously published prognostic model to predict clinical deterioration in patients hospitalized for COVID-19, using data following vaccine availability.
Methods: Using electronic health records of patients ≥18 years, with laboratory-confirmed COVID-19, from a large care-delivery network in Massachusetts, USA, from March 2020 to November 2021, we tested the performance of the previously developed prediction model and updated the prediction model by incorporating data after availability of COVID-19 vaccines. We randomly divided data into development (70%) and validation (30%) cohorts. We built a model predicting worsening in a published severity scale in 24 h by LASSO regression and evaluated performance by c-statistic and Brier score.
Results: Our study cohort consisted of 8185 patients (Development: 5730 patients [mean age: 62; 44% female] and Validation: 2455 patients [mean age: 62; 45% female]). The previously published model had suboptimal performance using data after November 2020 (N = 4973, c-statistic = 0.60. Brier score = 0.11). After retraining with the new data, the updated model included 38 predictors including 18 changing biomarkers. Patients hospitalized after Jun 1st, 2021 (when COVID-19 vaccines became widely available in Massachusetts) were younger and had fewer comorbidities than those hospitalized before. The c-statistic and Brier score were 0.77 and 0.13 in the development cohort, and 0.73 and 0.14 in the validation cohort.
Conclusion: The characteristics of patients hospitalized for COVID-19 differed substantially over time. We developed a new dynamic model for rapid progression with satisfactory performance in the validation set.
期刊介绍:
The aim of Pharmacoepidemiology and Drug Safety is to provide an international forum for the communication and evaluation of data, methods and opinion in the discipline of pharmacoepidemiology. The Journal publishes peer-reviewed reports of original research, invited reviews and a variety of guest editorials and commentaries embracing scientific, medical, statistical, legal and economic aspects of pharmacoepidemiology and post-marketing surveillance of drug safety. Appropriate material in these categories may also be considered for publication as a Brief Report.
Particular areas of interest include:
design, analysis, results, and interpretation of studies looking at the benefit or safety of specific pharmaceuticals, biologics, or medical devices, including studies in pharmacovigilance, postmarketing surveillance, pharmacoeconomics, patient safety, molecular pharmacoepidemiology, or any other study within the broad field of pharmacoepidemiology;
comparative effectiveness research relating to pharmaceuticals, biologics, and medical devices. Comparative effectiveness research is the generation and synthesis of evidence that compares the benefits and harms of alternative methods to prevent, diagnose, treat, and monitor a clinical condition, as these methods are truly used in the real world;
methodologic contributions of relevance to pharmacoepidemiology, whether original contributions, reviews of existing methods, or tutorials for how to apply the methods of pharmacoepidemiology;
assessments of harm versus benefit in drug therapy;
patterns of drug utilization;
relationships between pharmacoepidemiology and the formulation and interpretation of regulatory guidelines;
evaluations of risk management plans and programmes relating to pharmaceuticals, biologics and medical devices.