Changhong Zhao, Xinshu Zhu, Huili Yang, Jianmei Tan, Ruohan Gong, Chao Mei, Xiang Cai, Zhenhong Su, Fei Kong
{"title":"乳铁蛋白/CD133 抗体共轭纳米结构脂质载体用于血脑屏障和胶质母细胞瘤干细胞的双重靶向。","authors":"Changhong Zhao, Xinshu Zhu, Huili Yang, Jianmei Tan, Ruohan Gong, Chao Mei, Xiang Cai, Zhenhong Su, Fei Kong","doi":"10.1088/1748-605X/ad6e47","DOIUrl":null,"url":null,"abstract":"<p><p>The main reasons for the difficulty in curing and high recurrence rate of glioblastoma multiforme (GBM) include: 1. The difficulty of chemotherapy drugs in penetrating the blood-brain barrier (BBB) to target tumor cells; 2. The presence of glioma stem cells (GSCs) leading to chemotherapy resistance. Therefore, breaking through the limitations of the BBB and overcoming the drug resistance caused by GSCs are the main strategies to address this problem. This study presents our results on the development of lactoferrin (Lf)/CD133 antibody conjugated nanostructured lipid carriers (Lf/CD133-NLCS) for simultaneously targeting BBB and GSCs. Temozolomide (TMZ) loaded Lf/CD133-NLCS (Lf/CD133-NLCS-TMZ) exhibited high-efficiency<i>in vitro</i>anti-tumor effects toward malignant glioma cells (U87-MG) and GSCs, while demonstrating no significant toxicity to normal cells at concentrations lower than 200 μg ml<sup>-1</sup>. The results of the<i>in vitro</i>targeting GBM study revealed a notably higher cellular uptake of Lf/CD133-NLCS-TMZ in U87-MG cells and GSCs in comparison to Lf/CD133 unconjugated counterpart (NLCS-TMZ). In addition, increased BBB permeability were confirmed for Lf/CD133-NLCS-TMZ compared to NLCS-TMZ both<i>in vitro</i>and<i>in vivo</i>. Taking together, Lf/CD133-NLCS-TMZ show great potential for dual targeting of BBB and GSCs, as well as GBM therapy based on this strategy.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lactoferrin/CD133 antibody conjugated nanostructured lipid carriers for dual targeting of blood-brain-barrier and glioblastoma stem cells.\",\"authors\":\"Changhong Zhao, Xinshu Zhu, Huili Yang, Jianmei Tan, Ruohan Gong, Chao Mei, Xiang Cai, Zhenhong Su, Fei Kong\",\"doi\":\"10.1088/1748-605X/ad6e47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The main reasons for the difficulty in curing and high recurrence rate of glioblastoma multiforme (GBM) include: 1. The difficulty of chemotherapy drugs in penetrating the blood-brain barrier (BBB) to target tumor cells; 2. The presence of glioma stem cells (GSCs) leading to chemotherapy resistance. Therefore, breaking through the limitations of the BBB and overcoming the drug resistance caused by GSCs are the main strategies to address this problem. This study presents our results on the development of lactoferrin (Lf)/CD133 antibody conjugated nanostructured lipid carriers (Lf/CD133-NLCS) for simultaneously targeting BBB and GSCs. Temozolomide (TMZ) loaded Lf/CD133-NLCS (Lf/CD133-NLCS-TMZ) exhibited high-efficiency<i>in vitro</i>anti-tumor effects toward malignant glioma cells (U87-MG) and GSCs, while demonstrating no significant toxicity to normal cells at concentrations lower than 200 μg ml<sup>-1</sup>. The results of the<i>in vitro</i>targeting GBM study revealed a notably higher cellular uptake of Lf/CD133-NLCS-TMZ in U87-MG cells and GSCs in comparison to Lf/CD133 unconjugated counterpart (NLCS-TMZ). In addition, increased BBB permeability were confirmed for Lf/CD133-NLCS-TMZ compared to NLCS-TMZ both<i>in vitro</i>and<i>in vivo</i>. Taking together, Lf/CD133-NLCS-TMZ show great potential for dual targeting of BBB and GSCs, as well as GBM therapy based on this strategy.</p>\",\"PeriodicalId\":72389,\"journal\":{\"name\":\"Biomedical materials (Bristol, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ad6e47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ad6e47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lactoferrin/CD133 antibody conjugated nanostructured lipid carriers for dual targeting of blood-brain-barrier and glioblastoma stem cells.
The main reasons for the difficulty in curing and high recurrence rate of glioblastoma multiforme (GBM) include: 1. The difficulty of chemotherapy drugs in penetrating the blood-brain barrier (BBB) to target tumor cells; 2. The presence of glioma stem cells (GSCs) leading to chemotherapy resistance. Therefore, breaking through the limitations of the BBB and overcoming the drug resistance caused by GSCs are the main strategies to address this problem. This study presents our results on the development of lactoferrin (Lf)/CD133 antibody conjugated nanostructured lipid carriers (Lf/CD133-NLCS) for simultaneously targeting BBB and GSCs. Temozolomide (TMZ) loaded Lf/CD133-NLCS (Lf/CD133-NLCS-TMZ) exhibited high-efficiencyin vitroanti-tumor effects toward malignant glioma cells (U87-MG) and GSCs, while demonstrating no significant toxicity to normal cells at concentrations lower than 200 μg ml-1. The results of thein vitrotargeting GBM study revealed a notably higher cellular uptake of Lf/CD133-NLCS-TMZ in U87-MG cells and GSCs in comparison to Lf/CD133 unconjugated counterpart (NLCS-TMZ). In addition, increased BBB permeability were confirmed for Lf/CD133-NLCS-TMZ compared to NLCS-TMZ bothin vitroandin vivo. Taking together, Lf/CD133-NLCS-TMZ show great potential for dual targeting of BBB and GSCs, as well as GBM therapy based on this strategy.