应用于体外胶质母细胞瘤迁移的交互扩散系统推论。

Gustav Lindwall, Philip Gerlee
{"title":"应用于体外胶质母细胞瘤迁移的交互扩散系统推论。","authors":"Gustav Lindwall, Philip Gerlee","doi":"10.1093/imammb/dqae010","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma multiforme is a highly aggressive form of brain cancer, with a median survival time for diagnosed patients of 15 months. Treatment of this cancer is typically a combination of radiation, chemotherapy and surgical removal of the tumour. However, the highly invasive and diffuse nature of glioblastoma makes surgical intrusions difficult, and the diffusive properties of glioblastoma are poorly understood. In this paper, we introduce a stochastic interacting particle system as a model of in vitro glioblastoma migration, along with a maximum likelihood-algorithm designed for inference using microscopy imaging data. The inference method is evaluated on in silico simulation of cancer cell migration, and then applied to a real data set. We find that the inference method performs with a high degree of accuracy on the in silico data, and achieve promising results given the in vitro data set.</p>","PeriodicalId":94130,"journal":{"name":"Mathematical medicine and biology : a journal of the IMA","volume":" ","pages":"250-276"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inference on an interacting diffusion system with application to in vitro glioblastoma migration (publication template).\",\"authors\":\"Gustav Lindwall, Philip Gerlee\",\"doi\":\"10.1093/imammb/dqae010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glioblastoma multiforme is a highly aggressive form of brain cancer, with a median survival time for diagnosed patients of 15 months. Treatment of this cancer is typically a combination of radiation, chemotherapy and surgical removal of the tumour. However, the highly invasive and diffuse nature of glioblastoma makes surgical intrusions difficult, and the diffusive properties of glioblastoma are poorly understood. In this paper, we introduce a stochastic interacting particle system as a model of in vitro glioblastoma migration, along with a maximum likelihood-algorithm designed for inference using microscopy imaging data. The inference method is evaluated on in silico simulation of cancer cell migration, and then applied to a real data set. We find that the inference method performs with a high degree of accuracy on the in silico data, and achieve promising results given the in vitro data set.</p>\",\"PeriodicalId\":94130,\"journal\":{\"name\":\"Mathematical medicine and biology : a journal of the IMA\",\"volume\":\" \",\"pages\":\"250-276\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical medicine and biology : a journal of the IMA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imammb/dqae010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical medicine and biology : a journal of the IMA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imammb/dqae010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多形性胶质母细胞瘤是一种侵袭性很强的脑癌,确诊患者的中位生存期为 15 个月。治疗这种癌症的方法通常是放疗、化疗和手术切除肿瘤相结合。然而,胶质母细胞瘤的高侵袭性和弥漫性使得手术侵入十分困难,而且人们对胶质母细胞瘤的弥漫特性知之甚少。在本文中,我们引入了一个随机交互粒子系统作为体外胶质母细胞瘤迁移的模型,并设计了一种最大似然算法,用于利用显微镜成像数据进行推断。推理方法在癌细胞迁移的硅模拟中进行了评估,然后应用于真实数据集。我们发现,推理方法在硅学数据上表现出很高的准确性,在体外数据集上也取得了很好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inference on an interacting diffusion system with application to in vitro glioblastoma migration (publication template).

Glioblastoma multiforme is a highly aggressive form of brain cancer, with a median survival time for diagnosed patients of 15 months. Treatment of this cancer is typically a combination of radiation, chemotherapy and surgical removal of the tumour. However, the highly invasive and diffuse nature of glioblastoma makes surgical intrusions difficult, and the diffusive properties of glioblastoma are poorly understood. In this paper, we introduce a stochastic interacting particle system as a model of in vitro glioblastoma migration, along with a maximum likelihood-algorithm designed for inference using microscopy imaging data. The inference method is evaluated on in silico simulation of cancer cell migration, and then applied to a real data set. We find that the inference method performs with a high degree of accuracy on the in silico data, and achieve promising results given the in vitro data set.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mathematical modeling and analysis of emission and mitigation of methane from the integrated rice-livestock farming system. A signal processing tool adapted to the periodic biphasic phenomena: the Dynalet transform. Modelling the influence of vitamin D and probiotic supplementation on the microbiome and immune response. Effect of diffusivity of amyloid beta monomers on the formation of senile plaques. Genesis of intimal thickening due to hemodynamical shear stresses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1