Jordan Wean , Salisha Baranwal , Nicole Miller , Jae Hoon Shin , Robert W. O'Rourke , Charles F. Burant , Randy J. Seeley , Amy E. Rothberg , Nadejda Bozadjieva-Kramer
{"title":"肠道与肌肉之间的交流将 FGF19 水平与快速减肥后瘦肌肉质量的损失联系起来。","authors":"Jordan Wean , Salisha Baranwal , Nicole Miller , Jae Hoon Shin , Robert W. O'Rourke , Charles F. Burant , Randy J. Seeley , Amy E. Rothberg , Nadejda Bozadjieva-Kramer","doi":"10.1016/j.diabet.2024.101570","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Optimal weight loss involves decreasing adipose tissue while preserving lean muscle mass. Identifying molecular mediators that preserve lean muscle mass is therefore a clinically important goal. We have shown that circulating, postprandial FGF19 levels are lower in patients with obesity and decrease further with comorbidities such as type 2 diabetes and MASLD. Preclinical studies have shown that FGF15 (mouse ortholog of human FGF19) is necessary to protect against lean muscle mass loss following metabolic surgery-induced weight loss in a mouse model of diet-induced obesity. We evaluated if non-surgical weight loss interventions also lead to increased systemic levels of FGF19 and whether FGF19 levels are predictive of lean muscle mass following rapid weight loss in human subjects with obesity.</p></div><div><h3>Research design and methods</h3><p>Weight loss was induced in 176 subjects with obesity via a very low-energy diet, VLED (800 kcal/d) in the form of total liquid meal replacement for 3-4 months. We measured plasma FGF19 levels at baseline and following VLED-induced weight loss. Multiple linear regression was performed to assess if FGF19 levels were predictive of lean mass at baseline (obesity) and following VLED.</p></div><div><h3>Results</h3><p>Postprandial levels of FGF19 increased significantly following VLED-weight loss. Multiple linear regression analysis showed that baseline (obesity) FGF19 levels, but not post VLED FGF19 levels, significantly predicted the percent of lean muscle mass after VLED-induced weight loss, while controlling for age, sex, and the baseline percent lean mass.</p></div><div><h3>Conclusion</h3><p>These data identify gut-muscle communication and FGF19 as a potentially important mediator of the preservation of lean muscle mass during rapid weight loss.</p></div>","PeriodicalId":11334,"journal":{"name":"Diabetes & metabolism","volume":"50 5","pages":"Article 101570"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gut-muscle communication links FGF19 levels to the loss of lean muscle mass following rapid weight loss\",\"authors\":\"Jordan Wean , Salisha Baranwal , Nicole Miller , Jae Hoon Shin , Robert W. O'Rourke , Charles F. Burant , Randy J. Seeley , Amy E. Rothberg , Nadejda Bozadjieva-Kramer\",\"doi\":\"10.1016/j.diabet.2024.101570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>Optimal weight loss involves decreasing adipose tissue while preserving lean muscle mass. Identifying molecular mediators that preserve lean muscle mass is therefore a clinically important goal. We have shown that circulating, postprandial FGF19 levels are lower in patients with obesity and decrease further with comorbidities such as type 2 diabetes and MASLD. Preclinical studies have shown that FGF15 (mouse ortholog of human FGF19) is necessary to protect against lean muscle mass loss following metabolic surgery-induced weight loss in a mouse model of diet-induced obesity. We evaluated if non-surgical weight loss interventions also lead to increased systemic levels of FGF19 and whether FGF19 levels are predictive of lean muscle mass following rapid weight loss in human subjects with obesity.</p></div><div><h3>Research design and methods</h3><p>Weight loss was induced in 176 subjects with obesity via a very low-energy diet, VLED (800 kcal/d) in the form of total liquid meal replacement for 3-4 months. We measured plasma FGF19 levels at baseline and following VLED-induced weight loss. Multiple linear regression was performed to assess if FGF19 levels were predictive of lean mass at baseline (obesity) and following VLED.</p></div><div><h3>Results</h3><p>Postprandial levels of FGF19 increased significantly following VLED-weight loss. Multiple linear regression analysis showed that baseline (obesity) FGF19 levels, but not post VLED FGF19 levels, significantly predicted the percent of lean muscle mass after VLED-induced weight loss, while controlling for age, sex, and the baseline percent lean mass.</p></div><div><h3>Conclusion</h3><p>These data identify gut-muscle communication and FGF19 as a potentially important mediator of the preservation of lean muscle mass during rapid weight loss.</p></div>\",\"PeriodicalId\":11334,\"journal\":{\"name\":\"Diabetes & metabolism\",\"volume\":\"50 5\",\"pages\":\"Article 101570\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes & metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1262363624000624\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes & metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1262363624000624","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Gut-muscle communication links FGF19 levels to the loss of lean muscle mass following rapid weight loss
Objective
Optimal weight loss involves decreasing adipose tissue while preserving lean muscle mass. Identifying molecular mediators that preserve lean muscle mass is therefore a clinically important goal. We have shown that circulating, postprandial FGF19 levels are lower in patients with obesity and decrease further with comorbidities such as type 2 diabetes and MASLD. Preclinical studies have shown that FGF15 (mouse ortholog of human FGF19) is necessary to protect against lean muscle mass loss following metabolic surgery-induced weight loss in a mouse model of diet-induced obesity. We evaluated if non-surgical weight loss interventions also lead to increased systemic levels of FGF19 and whether FGF19 levels are predictive of lean muscle mass following rapid weight loss in human subjects with obesity.
Research design and methods
Weight loss was induced in 176 subjects with obesity via a very low-energy diet, VLED (800 kcal/d) in the form of total liquid meal replacement for 3-4 months. We measured plasma FGF19 levels at baseline and following VLED-induced weight loss. Multiple linear regression was performed to assess if FGF19 levels were predictive of lean mass at baseline (obesity) and following VLED.
Results
Postprandial levels of FGF19 increased significantly following VLED-weight loss. Multiple linear regression analysis showed that baseline (obesity) FGF19 levels, but not post VLED FGF19 levels, significantly predicted the percent of lean muscle mass after VLED-induced weight loss, while controlling for age, sex, and the baseline percent lean mass.
Conclusion
These data identify gut-muscle communication and FGF19 as a potentially important mediator of the preservation of lean muscle mass during rapid weight loss.
期刊介绍:
A high quality scientific journal with an international readership
Official publication of the SFD, Diabetes & Metabolism, publishes high-quality papers by leading teams, forming a close link between hospital and research units. Diabetes & Metabolism is published in English language and is indexed in all major databases with its impact factor constantly progressing.
Diabetes & Metabolism contains original articles, short reports and comprehensive reviews.