Mohammad Mokhles, Seyed Mojtaba Zebarjad, Habib Danesh-Manesh, Tushar R. Dandekar
{"title":"利用钛/镍反应多层箔增强镍-钛形状记忆合金的扩散接合","authors":"Mohammad Mokhles, Seyed Mojtaba Zebarjad, Habib Danesh-Manesh, Tushar R. Dandekar","doi":"10.1186/s40712-024-00162-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the utilization of Ti/Ni reactive multilayer foils as an energy source for facilitating the joining of Ni–Ti shape memory alloys through diffusion bonding. Multilayered samples were prepared using a 10-cycle accumulative roll bonding (ARB) process to be used for the bonding process. Diffusion bonding employing reactive multilayers was conducted over a temperature range of 600 °C to 900 °C, at 5 MPa pressure, with a 1-h hold time. Additionally, a comparison was made with a diffusion-bonded Nitinol sample at 900 °C without a reactive multilayer. Materials characterization and testing involved scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), shear strength testing, and differential scanning calorimetry (DSC), which were conducted on the bonded samples. The findings underscored the advantages of using reactive multilayers for diffusion bonding. These benefits included the formation of TiNi and the induction of a shape memory effect in the joint region, alongside a 1.5 times shear strength compared to identical diffusion bonding conditions without reactive multilayers. Moreover, employing reactive multilayers in the diffusion bonding of Nitinol holds promise for significantly reducing the energy needed to achieve robust and seamless bonded boundaries in the joining area.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00162-y","citationCount":"0","resultStr":"{\"title\":\"Enhancing Ni–Ti shape memory alloy diffusion bonding with Ti/Ni reactive multilayer foils\",\"authors\":\"Mohammad Mokhles, Seyed Mojtaba Zebarjad, Habib Danesh-Manesh, Tushar R. Dandekar\",\"doi\":\"10.1186/s40712-024-00162-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the utilization of Ti/Ni reactive multilayer foils as an energy source for facilitating the joining of Ni–Ti shape memory alloys through diffusion bonding. Multilayered samples were prepared using a 10-cycle accumulative roll bonding (ARB) process to be used for the bonding process. Diffusion bonding employing reactive multilayers was conducted over a temperature range of 600 °C to 900 °C, at 5 MPa pressure, with a 1-h hold time. Additionally, a comparison was made with a diffusion-bonded Nitinol sample at 900 °C without a reactive multilayer. Materials characterization and testing involved scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), shear strength testing, and differential scanning calorimetry (DSC), which were conducted on the bonded samples. The findings underscored the advantages of using reactive multilayers for diffusion bonding. These benefits included the formation of TiNi and the induction of a shape memory effect in the joint region, alongside a 1.5 times shear strength compared to identical diffusion bonding conditions without reactive multilayers. Moreover, employing reactive multilayers in the diffusion bonding of Nitinol holds promise for significantly reducing the energy needed to achieve robust and seamless bonded boundaries in the joining area.</p></div>\",\"PeriodicalId\":592,\"journal\":{\"name\":\"International Journal of Mechanical and Materials Engineering\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00162-y\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40712-024-00162-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-024-00162-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本研究探讨了如何利用钛/镍反应多层箔作为能源,通过扩散键合促进镍钛形状记忆合金的连接。使用 10 周期累积辊粘合 (ARB) 工艺制备了多层样品,用于粘合工艺。在 5 兆帕压力和 1 小时保持时间下,在 600 °C 至 900 °C 的温度范围内进行了采用反应多层膜的扩散接合。此外,还与 900 °C 时未使用反应多层膜的扩散键合镍钛诺样品进行了比较。材料表征和测试包括扫描电子显微镜 (SEM)、能量色散光谱 (EDS)、剪切强度测试和差示扫描量热法 (DSC)。研究结果凸显了使用反应多层膜进行扩散粘合的优势。这些优点包括在接合区域形成 TiNi 和诱导形状记忆效应,同时与没有反应多层膜的相同扩散粘合条件相比,剪切强度提高了 1.5 倍。此外,在镍钛诺的扩散接合中采用反应多层膜有望显著降低接合区域实现稳固无缝接合边界所需的能量。
This study investigates the utilization of Ti/Ni reactive multilayer foils as an energy source for facilitating the joining of Ni–Ti shape memory alloys through diffusion bonding. Multilayered samples were prepared using a 10-cycle accumulative roll bonding (ARB) process to be used for the bonding process. Diffusion bonding employing reactive multilayers was conducted over a temperature range of 600 °C to 900 °C, at 5 MPa pressure, with a 1-h hold time. Additionally, a comparison was made with a diffusion-bonded Nitinol sample at 900 °C without a reactive multilayer. Materials characterization and testing involved scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), shear strength testing, and differential scanning calorimetry (DSC), which were conducted on the bonded samples. The findings underscored the advantages of using reactive multilayers for diffusion bonding. These benefits included the formation of TiNi and the induction of a shape memory effect in the joint region, alongside a 1.5 times shear strength compared to identical diffusion bonding conditions without reactive multilayers. Moreover, employing reactive multilayers in the diffusion bonding of Nitinol holds promise for significantly reducing the energy needed to achieve robust and seamless bonded boundaries in the joining area.