{"title":"认知雷达目标态势感知的联合波形设计和资源分配策略","authors":"Yuxiao Song, Biao Tian, Rongqing Wang, Shiyou Xu, Zengping Chen","doi":"10.1049/rsn2.12575","DOIUrl":null,"url":null,"abstract":"<p>Traditional radar systems use fixed patterns and constant electromagnetic wave transmission to illuminate targets, but they often do not effectively use prior information about targets and consume significant radar resources. Cognitive radar has emerged as a way to improve resource efficiency and address these shortcomings. A joint waveform design and resource allocation strategy for cognitive radar that incorporates target situational awareness is proposed. This method integrates the interacting multiple model algorithm and the Unscented Kalman Particle Filter to achieve target situation awareness as prior knowledge. By combining the target attitude and the frequency response function of the target radar cross section at different time points in the prior knowledge, a joint beam control and power allocation strategy is formulated and transformed into an optimization problem. In addition, a cognitive pulse-to-pulse frequency agile waveform design method is proposed to support multiple target tracking under complex motion models. Simulation experiments demonstrate the effectiveness of this approach in obtaining accurate target situation information, achieving beam control, and optimizing power allocation. The designed waveforms can enhance radar target detection performance and improve low probability of intercept characteristics by adjusting the pulse repetition interval. This method has significant technical value.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"18 8","pages":"1364-1380"},"PeriodicalIF":1.4000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12575","citationCount":"0","resultStr":"{\"title\":\"Joint waveform design and resource allocation strategy for cognitive radar target situation awareness\",\"authors\":\"Yuxiao Song, Biao Tian, Rongqing Wang, Shiyou Xu, Zengping Chen\",\"doi\":\"10.1049/rsn2.12575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traditional radar systems use fixed patterns and constant electromagnetic wave transmission to illuminate targets, but they often do not effectively use prior information about targets and consume significant radar resources. Cognitive radar has emerged as a way to improve resource efficiency and address these shortcomings. A joint waveform design and resource allocation strategy for cognitive radar that incorporates target situational awareness is proposed. This method integrates the interacting multiple model algorithm and the Unscented Kalman Particle Filter to achieve target situation awareness as prior knowledge. By combining the target attitude and the frequency response function of the target radar cross section at different time points in the prior knowledge, a joint beam control and power allocation strategy is formulated and transformed into an optimization problem. In addition, a cognitive pulse-to-pulse frequency agile waveform design method is proposed to support multiple target tracking under complex motion models. Simulation experiments demonstrate the effectiveness of this approach in obtaining accurate target situation information, achieving beam control, and optimizing power allocation. The designed waveforms can enhance radar target detection performance and improve low probability of intercept characteristics by adjusting the pulse repetition interval. This method has significant technical value.</p>\",\"PeriodicalId\":50377,\"journal\":{\"name\":\"Iet Radar Sonar and Navigation\",\"volume\":\"18 8\",\"pages\":\"1364-1380\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12575\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Radar Sonar and Navigation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12575\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12575","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Joint waveform design and resource allocation strategy for cognitive radar target situation awareness
Traditional radar systems use fixed patterns and constant electromagnetic wave transmission to illuminate targets, but they often do not effectively use prior information about targets and consume significant radar resources. Cognitive radar has emerged as a way to improve resource efficiency and address these shortcomings. A joint waveform design and resource allocation strategy for cognitive radar that incorporates target situational awareness is proposed. This method integrates the interacting multiple model algorithm and the Unscented Kalman Particle Filter to achieve target situation awareness as prior knowledge. By combining the target attitude and the frequency response function of the target radar cross section at different time points in the prior knowledge, a joint beam control and power allocation strategy is formulated and transformed into an optimization problem. In addition, a cognitive pulse-to-pulse frequency agile waveform design method is proposed to support multiple target tracking under complex motion models. Simulation experiments demonstrate the effectiveness of this approach in obtaining accurate target situation information, achieving beam control, and optimizing power allocation. The designed waveforms can enhance radar target detection performance and improve low probability of intercept characteristics by adjusting the pulse repetition interval. This method has significant technical value.
期刊介绍:
IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications.
Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.