Leonardo Vinicius Monteiro de Assis, Lisbeth Harder, Julica Inderhees, Olaf Jöhren, Jens Mittag, Henrik Oster
{"title":"甲状腺激素受体 beta(THRB)对成年雄性小鼠昼夜肝脂代谢的依赖性调节","authors":"Leonardo Vinicius Monteiro de Assis, Lisbeth Harder, Julica Inderhees, Olaf Jöhren, Jens Mittag, Henrik Oster","doi":"10.1038/s44324-024-00023-4","DOIUrl":null,"url":null,"abstract":"Thyroid hormones (THs) are critical regulators of systemic energy metabolism and homeostasis. In the liver, high TH action protects against steatosis by enhancing cholesterol and triglyceride turnover, with thyroid hormone receptor beta (THRB) signaling playing a pivotal role. This study probed the potential interaction between THRB action and another critical regulator of liver energy metabolism, the circadian clock. Liver transcriptome analysis of THRB deficient (THRBKO) mice under normal chow conditions revealed a modest impact of THRB deletion. Temporal transcriptome and lipidome profiling uncovered significant alterations in diurnal metabolic rhythms attributable to THRB deficiency pointing to a pro-steatotic state with elevated levels of cholesterol, tri- and diacylglycerides, and fatty acids. These findings were confirmed by THRB agonization in hepatocytes under steatosis-promoting conditions in vitro. Integration of transcriptome profiles from THRBKO mice and mice with induced high or low TH action identified a subset of TH responsive but THRB insensitive genes implicated in immune processes. In summary, our study reveals a complex time-of-day dependent interaction of different TH-related signals in the regulation of liver physiology indicating an opportunity for chronopharmacological approaches to TH/THRB manipulation in fatty liver diseases.","PeriodicalId":501710,"journal":{"name":"npj Metabolic Health and Disease","volume":" ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44324-024-00023-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Thyroid hormone receptor beta (THRB) dependent regulation of diurnal hepatic lipid metabolism in adult male mice\",\"authors\":\"Leonardo Vinicius Monteiro de Assis, Lisbeth Harder, Julica Inderhees, Olaf Jöhren, Jens Mittag, Henrik Oster\",\"doi\":\"10.1038/s44324-024-00023-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thyroid hormones (THs) are critical regulators of systemic energy metabolism and homeostasis. In the liver, high TH action protects against steatosis by enhancing cholesterol and triglyceride turnover, with thyroid hormone receptor beta (THRB) signaling playing a pivotal role. This study probed the potential interaction between THRB action and another critical regulator of liver energy metabolism, the circadian clock. Liver transcriptome analysis of THRB deficient (THRBKO) mice under normal chow conditions revealed a modest impact of THRB deletion. Temporal transcriptome and lipidome profiling uncovered significant alterations in diurnal metabolic rhythms attributable to THRB deficiency pointing to a pro-steatotic state with elevated levels of cholesterol, tri- and diacylglycerides, and fatty acids. These findings were confirmed by THRB agonization in hepatocytes under steatosis-promoting conditions in vitro. Integration of transcriptome profiles from THRBKO mice and mice with induced high or low TH action identified a subset of TH responsive but THRB insensitive genes implicated in immune processes. In summary, our study reveals a complex time-of-day dependent interaction of different TH-related signals in the regulation of liver physiology indicating an opportunity for chronopharmacological approaches to TH/THRB manipulation in fatty liver diseases.\",\"PeriodicalId\":501710,\"journal\":{\"name\":\"npj Metabolic Health and Disease\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44324-024-00023-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Metabolic Health and Disease\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44324-024-00023-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Metabolic Health and Disease","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44324-024-00023-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thyroid hormone receptor beta (THRB) dependent regulation of diurnal hepatic lipid metabolism in adult male mice
Thyroid hormones (THs) are critical regulators of systemic energy metabolism and homeostasis. In the liver, high TH action protects against steatosis by enhancing cholesterol and triglyceride turnover, with thyroid hormone receptor beta (THRB) signaling playing a pivotal role. This study probed the potential interaction between THRB action and another critical regulator of liver energy metabolism, the circadian clock. Liver transcriptome analysis of THRB deficient (THRBKO) mice under normal chow conditions revealed a modest impact of THRB deletion. Temporal transcriptome and lipidome profiling uncovered significant alterations in diurnal metabolic rhythms attributable to THRB deficiency pointing to a pro-steatotic state with elevated levels of cholesterol, tri- and diacylglycerides, and fatty acids. These findings were confirmed by THRB agonization in hepatocytes under steatosis-promoting conditions in vitro. Integration of transcriptome profiles from THRBKO mice and mice with induced high or low TH action identified a subset of TH responsive but THRB insensitive genes implicated in immune processes. In summary, our study reveals a complex time-of-day dependent interaction of different TH-related signals in the regulation of liver physiology indicating an opportunity for chronopharmacological approaches to TH/THRB manipulation in fatty liver diseases.