临床和临床前综合研究发现 FerroTerminator1 是治疗 MASH 的有效药物

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2024-08-13 DOI:10.1016/j.cmet.2024.07.013
{"title":"临床和临床前综合研究发现 FerroTerminator1 是治疗 MASH 的有效药物","authors":"","doi":"10.1016/j.cmet.2024.07.013","DOIUrl":null,"url":null,"abstract":"<p>The complex etiological factors associated with metabolic dysfunction-associated fatty liver disease (MAFLD), including perturbed iron homeostasis, and the unclear nature by which they contribute to disease progression have resulted in a limited number of effective therapeutic interventions. Here, we report that patients with metabolic dysfunction-associated steatohepatitis (MASH), a pathological subtype of MAFLD, exhibit excess hepatic iron and that it has a strong positive correlation with disease progression. FerroTerminator1 (FOT1) effectively reverses liver injury across multiple MASH models without notable toxic side effects compared with clinically approved iron chelators. Mechanistically, our multi-omics analyses reveal that FOT1 concurrently inhibits hepatic iron accumulation and c-Myc-Acsl4-triggered ferroptosis in various MASH models. Furthermore, MAFLD cohort studies suggest that serum ferritin levels might serve as a predictive biomarker for FOT1-based therapy in MASH. These findings provide compelling evidence to support FOT1 as a promising novel therapeutic option for all stages of MAFLD and for future clinical trials.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrative clinical and preclinical studies identify FerroTerminator1 as a potent therapeutic drug for MASH\",\"authors\":\"\",\"doi\":\"10.1016/j.cmet.2024.07.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The complex etiological factors associated with metabolic dysfunction-associated fatty liver disease (MAFLD), including perturbed iron homeostasis, and the unclear nature by which they contribute to disease progression have resulted in a limited number of effective therapeutic interventions. Here, we report that patients with metabolic dysfunction-associated steatohepatitis (MASH), a pathological subtype of MAFLD, exhibit excess hepatic iron and that it has a strong positive correlation with disease progression. FerroTerminator1 (FOT1) effectively reverses liver injury across multiple MASH models without notable toxic side effects compared with clinically approved iron chelators. Mechanistically, our multi-omics analyses reveal that FOT1 concurrently inhibits hepatic iron accumulation and c-Myc-Acsl4-triggered ferroptosis in various MASH models. Furthermore, MAFLD cohort studies suggest that serum ferritin levels might serve as a predictive biomarker for FOT1-based therapy in MASH. These findings provide compelling evidence to support FOT1 as a promising novel therapeutic option for all stages of MAFLD and for future clinical trials.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cmet.2024.07.013\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2024.07.013","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

代谢功能障碍相关性脂肪性肝病(MAFLD)的病因复杂,包括铁平衡紊乱,而且这些因素导致疾病进展的性质尚不明确,因此有效的治疗干预措施数量有限。在此,我们报告了代谢功能障碍相关性脂肪性肝炎(MASH)(MAFLD 的一种病理亚型)患者表现出肝脏铁过量,并且与疾病进展有很强的正相关性。与临床批准的铁螯合剂相比,FerroTerminator1(FOT1)能有效逆转多种 MASH 模型的肝损伤,且无明显毒副作用。从机理上讲,我们的多组学分析表明,在各种 MASH 模型中,FOT1 可同时抑制肝铁蓄积和 c-Myc-Acsl4 触发的铁突变。此外,MAFLD 队列研究表明,血清铁蛋白水平可作为基于 FOT1 治疗 MASH 的预测性生物标志物。这些发现提供了令人信服的证据,支持将 FOT1 作为治疗 MAFLD 各个阶段和未来临床试验的一种有前途的新型疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrative clinical and preclinical studies identify FerroTerminator1 as a potent therapeutic drug for MASH

The complex etiological factors associated with metabolic dysfunction-associated fatty liver disease (MAFLD), including perturbed iron homeostasis, and the unclear nature by which they contribute to disease progression have resulted in a limited number of effective therapeutic interventions. Here, we report that patients with metabolic dysfunction-associated steatohepatitis (MASH), a pathological subtype of MAFLD, exhibit excess hepatic iron and that it has a strong positive correlation with disease progression. FerroTerminator1 (FOT1) effectively reverses liver injury across multiple MASH models without notable toxic side effects compared with clinically approved iron chelators. Mechanistically, our multi-omics analyses reveal that FOT1 concurrently inhibits hepatic iron accumulation and c-Myc-Acsl4-triggered ferroptosis in various MASH models. Furthermore, MAFLD cohort studies suggest that serum ferritin levels might serve as a predictive biomarker for FOT1-based therapy in MASH. These findings provide compelling evidence to support FOT1 as a promising novel therapeutic option for all stages of MAFLD and for future clinical trials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Highly Specific and Rapid Multiplex Identification of Candida Species Using Digital Microfluidics Integrated with a Semi-Nested Genoarray Advancing Targeted Metabolomics Using Cyanopropyl-Based Liquid Chromatography Tandem Mass Spectrometry Electrochemical Reactions Affected by Electric Double Layer Overlap in Conducting Nanopores A Novel Colon-Targeting Ratiometric Probe with Large Emission Shift for Imaging Peroxynitrite in Ulcerative Colitis Enantiomer-Specific Stable Carbon and Nitrogen Isotopic Analyses of Underivatized Individual l- and d-Amino Acids by HPLC + HPLC Separation and Nano-EA/IRMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1