Tao Xiong, Yingchao Chen, Qiang Peng, Mingle Li, Sheng Lu, Xiaoqiang Chen, Jiangli Fan, Lei Wang, Xiaojun Peng
{"title":"吡唑酮-蛋白质相互作用可在细胞膜上实现长期保留染色和简便的人工生物识别。","authors":"Tao Xiong, Yingchao Chen, Qiang Peng, Mingle Li, Sheng Lu, Xiaoqiang Chen, Jiangli Fan, Lei Wang, Xiaojun Peng","doi":"10.1021/jacs.4c08987","DOIUrl":null,"url":null,"abstract":"<p><p>Cell membrane genetic engineering has been utilized to confer cell membranes with functionalities for diagnostic and therapeutic purposes but concerns over cost and variable modification results. Although nongenetic chemical modification and phospholipid insertion strategies are more convenient, they still face bottlenecks in either biosafety or stability of the modifications. Herein, we show that pyrazolone-bearing molecules can bind to proteins with high stability, which is mainly contributed to by the multiple interactions between pyrazolone and basic amino acids. This new binding model offers a simple and versatile noncovalent approach for cell membrane functionalization. By binding to cell membrane proteins, pyrazolone-bearing dyes enabled precise cell tracking in vitro (>96 h) and in vivo (>21 days) without interfering with the protein function or causing cell death. Furthermore, the convenient anchor of pyrazolone-bearing biotin on cell membranes rendered the biorecognition to avidin, showing the potential for artificially creating cell targetability.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyrazolone-Protein Interaction Enables Long-Term Retention Staining and Facile Artificial Biorecognition on Cell Membranes.\",\"authors\":\"Tao Xiong, Yingchao Chen, Qiang Peng, Mingle Li, Sheng Lu, Xiaoqiang Chen, Jiangli Fan, Lei Wang, Xiaojun Peng\",\"doi\":\"10.1021/jacs.4c08987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell membrane genetic engineering has been utilized to confer cell membranes with functionalities for diagnostic and therapeutic purposes but concerns over cost and variable modification results. Although nongenetic chemical modification and phospholipid insertion strategies are more convenient, they still face bottlenecks in either biosafety or stability of the modifications. Herein, we show that pyrazolone-bearing molecules can bind to proteins with high stability, which is mainly contributed to by the multiple interactions between pyrazolone and basic amino acids. This new binding model offers a simple and versatile noncovalent approach for cell membrane functionalization. By binding to cell membrane proteins, pyrazolone-bearing dyes enabled precise cell tracking in vitro (>96 h) and in vivo (>21 days) without interfering with the protein function or causing cell death. Furthermore, the convenient anchor of pyrazolone-bearing biotin on cell membranes rendered the biorecognition to avidin, showing the potential for artificially creating cell targetability.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c08987\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c08987","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Pyrazolone-Protein Interaction Enables Long-Term Retention Staining and Facile Artificial Biorecognition on Cell Membranes.
Cell membrane genetic engineering has been utilized to confer cell membranes with functionalities for diagnostic and therapeutic purposes but concerns over cost and variable modification results. Although nongenetic chemical modification and phospholipid insertion strategies are more convenient, they still face bottlenecks in either biosafety or stability of the modifications. Herein, we show that pyrazolone-bearing molecules can bind to proteins with high stability, which is mainly contributed to by the multiple interactions between pyrazolone and basic amino acids. This new binding model offers a simple and versatile noncovalent approach for cell membrane functionalization. By binding to cell membrane proteins, pyrazolone-bearing dyes enabled precise cell tracking in vitro (>96 h) and in vivo (>21 days) without interfering with the protein function or causing cell death. Furthermore, the convenient anchor of pyrazolone-bearing biotin on cell membranes rendered the biorecognition to avidin, showing the potential for artificially creating cell targetability.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.