{"title":"利用基因组负荷估算优化圈养繁殖计划。","authors":"Evelyn L. Jensen, Rachel Gray, Joshua M. Miller","doi":"10.1111/1755-0998.14007","DOIUrl":null,"url":null,"abstract":"<p>Rapid biodiversity loss threatens many species with extinction. Captive populations of species of conservation concern (such as those housed in zoos and dedicated breeding centres) act as an insurance should wild populations go extinct or need supplemental individuals to boost populations. Limited resources mean that captive populations are almost always small and started from few founding individuals. As a result, captive populations require careful management to minimize negative genetic impacts, with decisions about which individuals to breed together often guided by the principle of minimizing relatedness. Typically this strategy aims to retain 90% of genetic diversity over 200 years (Soulé et al., <i>Zoo Biology</i>, 1986, 5, 101), but it has a weakness in that it does not directly manage for genetic load. In this issue of Molecular Ecology Resources, Speak et al. (<i>Molecular Ecology Resources</i>, 2024, e13967) present a novel proof-of-concept study for taking this next step and incorporating estimates of individual genetic load into the planning of captive breeding, using an approach that is likely to be widely applicable to many captive populations.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":"24 7","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1755-0998.14007","citationCount":"0","resultStr":"{\"title\":\"Leveraging genomic load estimates to optimize captive breeding programmes\",\"authors\":\"Evelyn L. Jensen, Rachel Gray, Joshua M. Miller\",\"doi\":\"10.1111/1755-0998.14007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rapid biodiversity loss threatens many species with extinction. Captive populations of species of conservation concern (such as those housed in zoos and dedicated breeding centres) act as an insurance should wild populations go extinct or need supplemental individuals to boost populations. Limited resources mean that captive populations are almost always small and started from few founding individuals. As a result, captive populations require careful management to minimize negative genetic impacts, with decisions about which individuals to breed together often guided by the principle of minimizing relatedness. Typically this strategy aims to retain 90% of genetic diversity over 200 years (Soulé et al., <i>Zoo Biology</i>, 1986, 5, 101), but it has a weakness in that it does not directly manage for genetic load. In this issue of Molecular Ecology Resources, Speak et al. (<i>Molecular Ecology Resources</i>, 2024, e13967) present a novel proof-of-concept study for taking this next step and incorporating estimates of individual genetic load into the planning of captive breeding, using an approach that is likely to be widely applicable to many captive populations.</p>\",\"PeriodicalId\":211,\"journal\":{\"name\":\"Molecular Ecology Resources\",\"volume\":\"24 7\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1755-0998.14007\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology Resources\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.14007\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.14007","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Leveraging genomic load estimates to optimize captive breeding programmes
Rapid biodiversity loss threatens many species with extinction. Captive populations of species of conservation concern (such as those housed in zoos and dedicated breeding centres) act as an insurance should wild populations go extinct or need supplemental individuals to boost populations. Limited resources mean that captive populations are almost always small and started from few founding individuals. As a result, captive populations require careful management to minimize negative genetic impacts, with decisions about which individuals to breed together often guided by the principle of minimizing relatedness. Typically this strategy aims to retain 90% of genetic diversity over 200 years (Soulé et al., Zoo Biology, 1986, 5, 101), but it has a weakness in that it does not directly manage for genetic load. In this issue of Molecular Ecology Resources, Speak et al. (Molecular Ecology Resources, 2024, e13967) present a novel proof-of-concept study for taking this next step and incorporating estimates of individual genetic load into the planning of captive breeding, using an approach that is likely to be widely applicable to many captive populations.
期刊介绍:
Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines.
In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.