{"title":"检查清单:说明个体参与者数据元分析结构方程模型的不同方法。","authors":"Lennert J. Groot, Kees-Jan Kan, Suzanne Jak","doi":"10.1002/jrsm.1735","DOIUrl":null,"url":null,"abstract":"<p>Researchers may have at their disposal the raw data of the studies they wish to meta-analyze. The goal of this study is to identify, illustrate, and compare a range of possible analysis options for researchers to whom raw data are available, wanting to fit a structural equation model (SEM) to these data. This study illustrates techniques that directly analyze the raw data, such as multilevel and multigroup SEM, and techniques based on summary statistics, such as correlation-based meta-analytical structural equation modeling (MASEM), discussing differences in procedures, capabilities, and outcomes. This is done by analyzing a previously published collection of datasets using open source software. A path model reflecting the theory of planned behavior is fitted to these datasets using different techniques involving SEM. Apart from differences in handling of missing data, the ability to include study-level moderators, and conceptualization of heterogeneity, results show differences in parameter estimates and standard errors across methods. Further research is needed to properly formulate guidelines for applied researchers looking to conduct individual participant data MASEM.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"15 6","pages":"872-895"},"PeriodicalIF":5.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1735","citationCount":"0","resultStr":"{\"title\":\"Checking the inventory: Illustrating different methods for individual participant data meta-analytic structural equation modeling\",\"authors\":\"Lennert J. Groot, Kees-Jan Kan, Suzanne Jak\",\"doi\":\"10.1002/jrsm.1735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Researchers may have at their disposal the raw data of the studies they wish to meta-analyze. The goal of this study is to identify, illustrate, and compare a range of possible analysis options for researchers to whom raw data are available, wanting to fit a structural equation model (SEM) to these data. This study illustrates techniques that directly analyze the raw data, such as multilevel and multigroup SEM, and techniques based on summary statistics, such as correlation-based meta-analytical structural equation modeling (MASEM), discussing differences in procedures, capabilities, and outcomes. This is done by analyzing a previously published collection of datasets using open source software. A path model reflecting the theory of planned behavior is fitted to these datasets using different techniques involving SEM. Apart from differences in handling of missing data, the ability to include study-level moderators, and conceptualization of heterogeneity, results show differences in parameter estimates and standard errors across methods. Further research is needed to properly formulate guidelines for applied researchers looking to conduct individual participant data MASEM.</p>\",\"PeriodicalId\":226,\"journal\":{\"name\":\"Research Synthesis Methods\",\"volume\":\"15 6\",\"pages\":\"872-895\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1735\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Synthesis Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1735\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1735","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
研究人员可能掌握着他们希望进行元分析的研究的原始数据。本研究的目的是为希望对原始数据进行结构方程模型(SEM)拟合的研究人员确定、说明和比较一系列可能的分析方案。本研究阐述了直接分析原始数据的技术(如多层次和多组 SEM)和基于汇总统计的技术(如基于相关性的元分析结构方程模型 (MASEM)),讨论了程序、能力和结果方面的差异。这是通过使用开放源码软件分析以前发表的数据集来实现的。使用涉及 SEM 的不同技术,将反映计划行为理论的路径模型与这些数据集进行拟合。除了在处理缺失数据、纳入研究层面调节因素的能力以及异质性概念化方面存在差异外,结果还显示出不同方法在参数估计和标准误差方面的差异。需要进一步开展研究,为希望进行个体参与者数据 MASEM 的应用研究人员制定适当的指导原则。
Checking the inventory: Illustrating different methods for individual participant data meta-analytic structural equation modeling
Researchers may have at their disposal the raw data of the studies they wish to meta-analyze. The goal of this study is to identify, illustrate, and compare a range of possible analysis options for researchers to whom raw data are available, wanting to fit a structural equation model (SEM) to these data. This study illustrates techniques that directly analyze the raw data, such as multilevel and multigroup SEM, and techniques based on summary statistics, such as correlation-based meta-analytical structural equation modeling (MASEM), discussing differences in procedures, capabilities, and outcomes. This is done by analyzing a previously published collection of datasets using open source software. A path model reflecting the theory of planned behavior is fitted to these datasets using different techniques involving SEM. Apart from differences in handling of missing data, the ability to include study-level moderators, and conceptualization of heterogeneity, results show differences in parameter estimates and standard errors across methods. Further research is needed to properly formulate guidelines for applied researchers looking to conduct individual participant data MASEM.
期刊介绍:
Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines.
Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines.
By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.