{"title":"单细胞分析发现 PDIA3 是人类癌症恶性特征和巨噬细胞功能的调节因子。","authors":"Wantao Wu, Gang Peng, Kaiyue Wang, Yijian Yang, Zhikun Liu, Gelei Xiao","doi":"10.1007/s10142-024-01416-w","DOIUrl":null,"url":null,"abstract":"<div><p>Protein disulfide isomerase A3 (PDIA3) is an endoplasmic reticulum (ER) protein. It has different functions including glycoprotein folding in the ER. The unfavorable prognosis of cancer patients was related to the abnormal PDIA3 expression level. However, it is unclear how PDIA3 correlates with the malignant characteristics of different tumors and its impact on tumor immunity. Pan-cancer data were downloaded from several databases for large-scale bioinformatics analysis. The immunological functions of PDIA3 were systematically explored at the single-cell sequencing level, including cell communication, cell metabolism, cell evolution and epigenetic modification. We performed immunofluorescence staining to visualize PDIA3 expression and infiltration of macrophages in pan-cancer samples. Further, we performed a loss-of-function assay of PDIA3 in vitro. The CCK8 assay, clone formation assay, and transwell assay were performed. M2 macrophages were co-cultured with different cell lines before the transwell assay was performed. The immunofluorescence staining of pan-cancer samples presented a higher expression of PDIA3 than those of the paired normal tissues. According to single-cell sequencing analysis, expression of PDIA3 was closely associated with cell communication, cell metabolism, cell evolution and epigenetic modification. The knockdown of PDIA3 in tumor cells inhibited cell proliferation and invasion, and restrained cocultured M2 macrophage migration. Furthermore, PDIA3 displayed predictive value in immunotherapy response in human cancer cohorts, indicating a potential therapeutic target. Our study showed that PDIA3 was associated with tumor malignant characteristics and could mediate the migration of M2 macrophages in various tumor types. PDIA3 could be a promising target to achieve tumor control and improve the immune response on a pan-cancer scale.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"24 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell analysis identified PDIA3 as regulator of malignant characteristics and macrophage function in human cancers\",\"authors\":\"Wantao Wu, Gang Peng, Kaiyue Wang, Yijian Yang, Zhikun Liu, Gelei Xiao\",\"doi\":\"10.1007/s10142-024-01416-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Protein disulfide isomerase A3 (PDIA3) is an endoplasmic reticulum (ER) protein. It has different functions including glycoprotein folding in the ER. The unfavorable prognosis of cancer patients was related to the abnormal PDIA3 expression level. However, it is unclear how PDIA3 correlates with the malignant characteristics of different tumors and its impact on tumor immunity. Pan-cancer data were downloaded from several databases for large-scale bioinformatics analysis. The immunological functions of PDIA3 were systematically explored at the single-cell sequencing level, including cell communication, cell metabolism, cell evolution and epigenetic modification. We performed immunofluorescence staining to visualize PDIA3 expression and infiltration of macrophages in pan-cancer samples. Further, we performed a loss-of-function assay of PDIA3 in vitro. The CCK8 assay, clone formation assay, and transwell assay were performed. M2 macrophages were co-cultured with different cell lines before the transwell assay was performed. The immunofluorescence staining of pan-cancer samples presented a higher expression of PDIA3 than those of the paired normal tissues. According to single-cell sequencing analysis, expression of PDIA3 was closely associated with cell communication, cell metabolism, cell evolution and epigenetic modification. The knockdown of PDIA3 in tumor cells inhibited cell proliferation and invasion, and restrained cocultured M2 macrophage migration. Furthermore, PDIA3 displayed predictive value in immunotherapy response in human cancer cohorts, indicating a potential therapeutic target. Our study showed that PDIA3 was associated with tumor malignant characteristics and could mediate the migration of M2 macrophages in various tumor types. PDIA3 could be a promising target to achieve tumor control and improve the immune response on a pan-cancer scale.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":574,\"journal\":{\"name\":\"Functional & Integrative Genomics\",\"volume\":\"24 4\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional & Integrative Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10142-024-01416-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional & Integrative Genomics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10142-024-01416-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Single-cell analysis identified PDIA3 as regulator of malignant characteristics and macrophage function in human cancers
Protein disulfide isomerase A3 (PDIA3) is an endoplasmic reticulum (ER) protein. It has different functions including glycoprotein folding in the ER. The unfavorable prognosis of cancer patients was related to the abnormal PDIA3 expression level. However, it is unclear how PDIA3 correlates with the malignant characteristics of different tumors and its impact on tumor immunity. Pan-cancer data were downloaded from several databases for large-scale bioinformatics analysis. The immunological functions of PDIA3 were systematically explored at the single-cell sequencing level, including cell communication, cell metabolism, cell evolution and epigenetic modification. We performed immunofluorescence staining to visualize PDIA3 expression and infiltration of macrophages in pan-cancer samples. Further, we performed a loss-of-function assay of PDIA3 in vitro. The CCK8 assay, clone formation assay, and transwell assay were performed. M2 macrophages were co-cultured with different cell lines before the transwell assay was performed. The immunofluorescence staining of pan-cancer samples presented a higher expression of PDIA3 than those of the paired normal tissues. According to single-cell sequencing analysis, expression of PDIA3 was closely associated with cell communication, cell metabolism, cell evolution and epigenetic modification. The knockdown of PDIA3 in tumor cells inhibited cell proliferation and invasion, and restrained cocultured M2 macrophage migration. Furthermore, PDIA3 displayed predictive value in immunotherapy response in human cancer cohorts, indicating a potential therapeutic target. Our study showed that PDIA3 was associated with tumor malignant characteristics and could mediate the migration of M2 macrophages in various tumor types. PDIA3 could be a promising target to achieve tumor control and improve the immune response on a pan-cancer scale.
期刊介绍:
Functional & Integrative Genomics is devoted to large-scale studies of genomes and their functions, including systems analyses of biological processes. The journal will provide the research community an integrated platform where researchers can share, review and discuss their findings on important biological questions that will ultimately enable us to answer the fundamental question: How do genomes work?