Xiaoxiao Yu, Kai Yang, Zhihao Fang, Changxu Liu, Titi Hui, Zihao Guo, Zhichao Dong, Chang Liu
{"title":"潜在铁中毒和非酒精性脂肪肝生物标志物的生物信息学分析。","authors":"Xiaoxiao Yu, Kai Yang, Zhihao Fang, Changxu Liu, Titi Hui, Zihao Guo, Zhichao Dong, Chang Liu","doi":"10.4149/gpb_2024017","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis plays a crucial role in the development of non-alcoholic fatty liver disease (NAFLD). In this study, we aimed to use a comprehensive bioinformatics approach and experimental validation to identify and verify potential ferroptosis-related genes in NAFLD. We downloaded the microarray datasets for screening differentially expressed genes (DEGs) and identified the intersection of these datasets with ferroptosis-related DEGs from the Ferroptosis database. Subsequently, ferroptosis-related DEGs were obtained using SVM analysis; the LASSO algorithm was then used to identify six marker genes. Furthermore, the CIBERSORT algorithm was used to estimate the proportion of different types of immune cells. Subsequently, we constructed drug regulatory networks and ceRNA regulatory networks. We identified six genes as marker genes for NAFLD, demonstrating their robust diagnostic abilities. Subsequent functional enrichment analysis results revealed that these marker genes were associated with multiple diseases and play a key role in NAFLD via the regulation of immune response and amino acid metabolism, among other pathways. The expression of hepatic EGR1, IL-6, SOCS1, and NR4A1 was significantly downregulated in the NAFLD model. Our findings provide new insights and molecular clues for understanding and treating NAFLD. Further studies are needed to assess the diagnostic potential of these markers for NAFLD.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinformatics analysis of potential ferroptosis and non-alcoholic fatty liver disease biomarkers.\",\"authors\":\"Xiaoxiao Yu, Kai Yang, Zhihao Fang, Changxu Liu, Titi Hui, Zihao Guo, Zhichao Dong, Chang Liu\",\"doi\":\"10.4149/gpb_2024017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ferroptosis plays a crucial role in the development of non-alcoholic fatty liver disease (NAFLD). In this study, we aimed to use a comprehensive bioinformatics approach and experimental validation to identify and verify potential ferroptosis-related genes in NAFLD. We downloaded the microarray datasets for screening differentially expressed genes (DEGs) and identified the intersection of these datasets with ferroptosis-related DEGs from the Ferroptosis database. Subsequently, ferroptosis-related DEGs were obtained using SVM analysis; the LASSO algorithm was then used to identify six marker genes. Furthermore, the CIBERSORT algorithm was used to estimate the proportion of different types of immune cells. Subsequently, we constructed drug regulatory networks and ceRNA regulatory networks. We identified six genes as marker genes for NAFLD, demonstrating their robust diagnostic abilities. Subsequent functional enrichment analysis results revealed that these marker genes were associated with multiple diseases and play a key role in NAFLD via the regulation of immune response and amino acid metabolism, among other pathways. The expression of hepatic EGR1, IL-6, SOCS1, and NR4A1 was significantly downregulated in the NAFLD model. Our findings provide new insights and molecular clues for understanding and treating NAFLD. Further studies are needed to assess the diagnostic potential of these markers for NAFLD.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.4149/gpb_2024017\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4149/gpb_2024017","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Bioinformatics analysis of potential ferroptosis and non-alcoholic fatty liver disease biomarkers.
Ferroptosis plays a crucial role in the development of non-alcoholic fatty liver disease (NAFLD). In this study, we aimed to use a comprehensive bioinformatics approach and experimental validation to identify and verify potential ferroptosis-related genes in NAFLD. We downloaded the microarray datasets for screening differentially expressed genes (DEGs) and identified the intersection of these datasets with ferroptosis-related DEGs from the Ferroptosis database. Subsequently, ferroptosis-related DEGs were obtained using SVM analysis; the LASSO algorithm was then used to identify six marker genes. Furthermore, the CIBERSORT algorithm was used to estimate the proportion of different types of immune cells. Subsequently, we constructed drug regulatory networks and ceRNA regulatory networks. We identified six genes as marker genes for NAFLD, demonstrating their robust diagnostic abilities. Subsequent functional enrichment analysis results revealed that these marker genes were associated with multiple diseases and play a key role in NAFLD via the regulation of immune response and amino acid metabolism, among other pathways. The expression of hepatic EGR1, IL-6, SOCS1, and NR4A1 was significantly downregulated in the NAFLD model. Our findings provide new insights and molecular clues for understanding and treating NAFLD. Further studies are needed to assess the diagnostic potential of these markers for NAFLD.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.