{"title":"通过 MNK 抑制剂选择性地有效抑制胰腺癌。","authors":"Hui Li, Yang Yao, Rui Hao, Cheng Long","doi":"10.1080/08923973.2024.2391462","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The study aimed to explore the role of the Wnt/β-catenin signaling pathway in pancreatic cancer progression and chemoresistance, with a focus on identifying specific factors that distinguish between normal and tumor cells, thereby offering potential therapeutic targets.</p><p><strong>Materials and methods: </strong>We analyzed levels of total and phosphorylated eukaryotic translation initiation factor 4E (eIF4E) and β-catenin in pancreatic cancer and normal pancreatic tissues. Functional assays were used to assess the impact of eIF4E phosphorylation on β-catenin signaling, cell proliferation, and chemoresistance, with MNK kinase involvement determined through gene depletion studies. The MNK kinase inhibitor eFT508 was evaluated for its effects on eIF4E phosphorylation, β-catenin activation, and cell viability in both <i>in vitro</i> and <i>in vivo</i> models of pancreatic cancer.</p><p><strong>Results: </strong>Both total and phosphorylated eIF4E, along with β-catenin, were significantly elevated in pancreatic cancer tissues compared to normal tissues. Phosphorylation of eIF4E at serine 209 was shown to activate β-catenin signaling, enhance cell proliferation, and contribute to chemoresistance in pancreatic cancer. Importantly, these effects were dependent on MNK kinase activity. Depletion of eIF4E reduced cell viability in both pancreatic cancer and normal cells, while depletion of MNK selectively decreased viability in pancreatic cancer cells. Treatment with eFT508 effectively inhibited eIF4E phosphorylation, suppressed β-catenin activation, and reduced pancreatic cancer cell growth and survival <i>in vitro</i> and <i>in vivo</i>, with minimal impact on normal cells.</p><p><p><b>Conclusions:</b> The MNK-eIF4E-β-catenin axis plays a critical role in pancreatic cancer progression and chemoresistance, distinguishing pancreatic cancer cells from normal cells. Targeting MNK kinases with inhibitors like eFT508 presents a promising therapeutic strategy for pancreatic cancer, with potential for selective efficacy and reduced toxicity.</p>","PeriodicalId":13420,"journal":{"name":"Immunopharmacology and Immunotoxicology","volume":" ","pages":"651-661"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective and effective suppression of pancreatic cancer through MNK inhibition.\",\"authors\":\"Hui Li, Yang Yao, Rui Hao, Cheng Long\",\"doi\":\"10.1080/08923973.2024.2391462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The study aimed to explore the role of the Wnt/β-catenin signaling pathway in pancreatic cancer progression and chemoresistance, with a focus on identifying specific factors that distinguish between normal and tumor cells, thereby offering potential therapeutic targets.</p><p><strong>Materials and methods: </strong>We analyzed levels of total and phosphorylated eukaryotic translation initiation factor 4E (eIF4E) and β-catenin in pancreatic cancer and normal pancreatic tissues. Functional assays were used to assess the impact of eIF4E phosphorylation on β-catenin signaling, cell proliferation, and chemoresistance, with MNK kinase involvement determined through gene depletion studies. The MNK kinase inhibitor eFT508 was evaluated for its effects on eIF4E phosphorylation, β-catenin activation, and cell viability in both <i>in vitro</i> and <i>in vivo</i> models of pancreatic cancer.</p><p><strong>Results: </strong>Both total and phosphorylated eIF4E, along with β-catenin, were significantly elevated in pancreatic cancer tissues compared to normal tissues. Phosphorylation of eIF4E at serine 209 was shown to activate β-catenin signaling, enhance cell proliferation, and contribute to chemoresistance in pancreatic cancer. Importantly, these effects were dependent on MNK kinase activity. Depletion of eIF4E reduced cell viability in both pancreatic cancer and normal cells, while depletion of MNK selectively decreased viability in pancreatic cancer cells. Treatment with eFT508 effectively inhibited eIF4E phosphorylation, suppressed β-catenin activation, and reduced pancreatic cancer cell growth and survival <i>in vitro</i> and <i>in vivo</i>, with minimal impact on normal cells.</p><p><p><b>Conclusions:</b> The MNK-eIF4E-β-catenin axis plays a critical role in pancreatic cancer progression and chemoresistance, distinguishing pancreatic cancer cells from normal cells. Targeting MNK kinases with inhibitors like eFT508 presents a promising therapeutic strategy for pancreatic cancer, with potential for selective efficacy and reduced toxicity.</p>\",\"PeriodicalId\":13420,\"journal\":{\"name\":\"Immunopharmacology and Immunotoxicology\",\"volume\":\" \",\"pages\":\"651-661\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunopharmacology and Immunotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08923973.2024.2391462\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunopharmacology and Immunotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08923973.2024.2391462","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Selective and effective suppression of pancreatic cancer through MNK inhibition.
Objective: The study aimed to explore the role of the Wnt/β-catenin signaling pathway in pancreatic cancer progression and chemoresistance, with a focus on identifying specific factors that distinguish between normal and tumor cells, thereby offering potential therapeutic targets.
Materials and methods: We analyzed levels of total and phosphorylated eukaryotic translation initiation factor 4E (eIF4E) and β-catenin in pancreatic cancer and normal pancreatic tissues. Functional assays were used to assess the impact of eIF4E phosphorylation on β-catenin signaling, cell proliferation, and chemoresistance, with MNK kinase involvement determined through gene depletion studies. The MNK kinase inhibitor eFT508 was evaluated for its effects on eIF4E phosphorylation, β-catenin activation, and cell viability in both in vitro and in vivo models of pancreatic cancer.
Results: Both total and phosphorylated eIF4E, along with β-catenin, were significantly elevated in pancreatic cancer tissues compared to normal tissues. Phosphorylation of eIF4E at serine 209 was shown to activate β-catenin signaling, enhance cell proliferation, and contribute to chemoresistance in pancreatic cancer. Importantly, these effects were dependent on MNK kinase activity. Depletion of eIF4E reduced cell viability in both pancreatic cancer and normal cells, while depletion of MNK selectively decreased viability in pancreatic cancer cells. Treatment with eFT508 effectively inhibited eIF4E phosphorylation, suppressed β-catenin activation, and reduced pancreatic cancer cell growth and survival in vitro and in vivo, with minimal impact on normal cells.
Conclusions: The MNK-eIF4E-β-catenin axis plays a critical role in pancreatic cancer progression and chemoresistance, distinguishing pancreatic cancer cells from normal cells. Targeting MNK kinases with inhibitors like eFT508 presents a promising therapeutic strategy for pancreatic cancer, with potential for selective efficacy and reduced toxicity.
期刊介绍:
The journal Immunopharmacology and Immunotoxicology is devoted to pre-clinical and clinical drug discovery and development targeting the immune system. Research related to the immunoregulatory effects of various compounds, including small-molecule drugs and biologics, on immunocompetent cells and immune responses, as well as the immunotoxicity exerted by xenobiotics and drugs. Only research that describe the mechanisms of specific compounds (not extracts) is of interest to the journal.
The journal will prioritise preclinical and clinical studies on immunotherapy of disorders such as chronic inflammation, allergy, autoimmunity, cancer etc. The effects of small-drugs, vaccines and biologics against central immunological targets as well as cell-based therapy, including dendritic cell therapy, T cell adoptive transfer and stem cell therapy, are topics of particular interest. Publications pointing towards potential new drug targets within the immune system or novel technology for immunopharmacological drug development are also welcome.
With an immunoscience focus on drug development, immunotherapy and toxicology, the journal will cover areas such as infection, allergy, inflammation, tumor immunology, degenerative disorders, immunodeficiencies, neurology, atherosclerosis and more.
Immunopharmacology and Immunotoxicology will accept original manuscripts, brief communications, commentaries, mini-reviews, reviews, clinical trials and clinical cases, on the condition that the results reported are based on original, clinical, or basic research that has not been published elsewhere in any journal in any language (except in abstract form relating to paper communicated to scientific meetings and symposiums).