{"title":"利用元基因组新一代测序技术探索重症 COVID-19 的病原体诊断和预后因素:一项回顾性研究。","authors":"Weizhong Zeng, Yanchao Liang, Xiaoyuan He, Fangwei Chen, Jiali Xiong, Zhenhua Wen, Liang Tang, Xun Chen, Juan Zhang","doi":"10.5937/jomb0-49102","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aimed to identify pathogens and factors that predict the outcome of severe COVID-19 by utilizing metagenomic next-generation sequencing (mNGS) technology.</p><p><strong>Methods: </strong>We retrospectively analyzed data from 56 severe COVID-19 patients admitted to our hospital between December 2022 and March 2023. We analyzed the pathogen types and strains detected through mNGS and conventional microbiological testing and collected general patient information.</p><p><strong>Results: </strong>In this study, 42 pathogens were detected using mNGS and conventional microbiological testing. mNGS had a significantly higher detection rate of 90.48% compared to 71.43% for conventional testing (P=0.026). A total of 196 strains were detected using both methods, with a significantly higher detection rate of 70.92% for mNGS compared to 49.49% for conventional testing (P=0.000). The 56 patients were divided into a survival group (33 cases) and a death group (23 cases) based on clinical outcomes. The survival group had significantly lower age, number of pathogens detected by mNGS, number of pathogens detected by conventional testing, APACHE-II score, SOFA score, high-sensitivity troponin, creatine kinase-MB subtype, and lactate dehydrogenase compared to the death group (P<0.05). Multivariate logistic regression analysis showed that these factors were risk factors for mortality in severe COVID-19 patients (P<0.05). In contrast, ROC curve analysis revealed that these factors had diagnostic values for mortality, with AUC values ranging from 0.657 to 0.963. The combined diagnosis of these indicators had an AUC of 0.924.</p><p><strong>Conclusions: </strong>The use of mNGS technology can significantly enhance the detection of pathogens in severe cases of COVID-19 and also has a solid ability to predict clinical outcomes.</p>","PeriodicalId":16175,"journal":{"name":"Journal of Medical Biochemistry","volume":"43 4","pages":"528-536"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318844/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring the pathogen diagnosis and prognostic factors of severe COVID-19 using metagenomic next-generation sequencing: A retrospective study.\",\"authors\":\"Weizhong Zeng, Yanchao Liang, Xiaoyuan He, Fangwei Chen, Jiali Xiong, Zhenhua Wen, Liang Tang, Xun Chen, Juan Zhang\",\"doi\":\"10.5937/jomb0-49102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>This study aimed to identify pathogens and factors that predict the outcome of severe COVID-19 by utilizing metagenomic next-generation sequencing (mNGS) technology.</p><p><strong>Methods: </strong>We retrospectively analyzed data from 56 severe COVID-19 patients admitted to our hospital between December 2022 and March 2023. We analyzed the pathogen types and strains detected through mNGS and conventional microbiological testing and collected general patient information.</p><p><strong>Results: </strong>In this study, 42 pathogens were detected using mNGS and conventional microbiological testing. mNGS had a significantly higher detection rate of 90.48% compared to 71.43% for conventional testing (P=0.026). A total of 196 strains were detected using both methods, with a significantly higher detection rate of 70.92% for mNGS compared to 49.49% for conventional testing (P=0.000). The 56 patients were divided into a survival group (33 cases) and a death group (23 cases) based on clinical outcomes. The survival group had significantly lower age, number of pathogens detected by mNGS, number of pathogens detected by conventional testing, APACHE-II score, SOFA score, high-sensitivity troponin, creatine kinase-MB subtype, and lactate dehydrogenase compared to the death group (P<0.05). Multivariate logistic regression analysis showed that these factors were risk factors for mortality in severe COVID-19 patients (P<0.05). In contrast, ROC curve analysis revealed that these factors had diagnostic values for mortality, with AUC values ranging from 0.657 to 0.963. The combined diagnosis of these indicators had an AUC of 0.924.</p><p><strong>Conclusions: </strong>The use of mNGS technology can significantly enhance the detection of pathogens in severe cases of COVID-19 and also has a solid ability to predict clinical outcomes.</p>\",\"PeriodicalId\":16175,\"journal\":{\"name\":\"Journal of Medical Biochemistry\",\"volume\":\"43 4\",\"pages\":\"528-536\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318844/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5937/jomb0-49102\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5937/jomb0-49102","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exploring the pathogen diagnosis and prognostic factors of severe COVID-19 using metagenomic next-generation sequencing: A retrospective study.
Background: This study aimed to identify pathogens and factors that predict the outcome of severe COVID-19 by utilizing metagenomic next-generation sequencing (mNGS) technology.
Methods: We retrospectively analyzed data from 56 severe COVID-19 patients admitted to our hospital between December 2022 and March 2023. We analyzed the pathogen types and strains detected through mNGS and conventional microbiological testing and collected general patient information.
Results: In this study, 42 pathogens were detected using mNGS and conventional microbiological testing. mNGS had a significantly higher detection rate of 90.48% compared to 71.43% for conventional testing (P=0.026). A total of 196 strains were detected using both methods, with a significantly higher detection rate of 70.92% for mNGS compared to 49.49% for conventional testing (P=0.000). The 56 patients were divided into a survival group (33 cases) and a death group (23 cases) based on clinical outcomes. The survival group had significantly lower age, number of pathogens detected by mNGS, number of pathogens detected by conventional testing, APACHE-II score, SOFA score, high-sensitivity troponin, creatine kinase-MB subtype, and lactate dehydrogenase compared to the death group (P<0.05). Multivariate logistic regression analysis showed that these factors were risk factors for mortality in severe COVID-19 patients (P<0.05). In contrast, ROC curve analysis revealed that these factors had diagnostic values for mortality, with AUC values ranging from 0.657 to 0.963. The combined diagnosis of these indicators had an AUC of 0.924.
Conclusions: The use of mNGS technology can significantly enhance the detection of pathogens in severe cases of COVID-19 and also has a solid ability to predict clinical outcomes.
期刊介绍:
The JOURNAL OF MEDICAL BIOCHEMISTRY (J MED BIOCHEM) is the official journal of the Society of Medical Biochemists of Serbia with international peer-review. Papers are independently reviewed by at least two reviewers selected by the Editors as Blind Peer Reviews. The Journal of Medical Biochemistry is published quarterly.
The Journal publishes original scientific and specialized articles on all aspects of
clinical and medical biochemistry,
molecular medicine,
clinical hematology and coagulation,
clinical immunology and autoimmunity,
clinical microbiology,
virology,
clinical genomics and molecular biology,
genetic epidemiology,
drug measurement,
evaluation of diagnostic markers,
new reagents and laboratory equipment,
reference materials and methods,
reference values,
laboratory organization,
automation,
quality control,
clinical metrology,
all related scientific disciplines where chemistry, biochemistry, molecular biology and immunochemistry deal with the study of normal and pathologic processes in human beings.