利用厌氧消化进行污水污泥管理和强化能源回收:一种见解。

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Water Science and Technology Pub Date : 2024-08-01 Epub Date: 2024-08-05 DOI:10.2166/wst.2024.269
Vinay Pratap, Sunil Kumar, Bholu Ram Yadav
{"title":"利用厌氧消化进行污水污泥管理和强化能源回收:一种见解。","authors":"Vinay Pratap, Sunil Kumar, Bholu Ram Yadav","doi":"10.2166/wst.2024.269","DOIUrl":null,"url":null,"abstract":"<p><p>Sewage sludge (SS) is a potential source of bioenergy, yet its management is a global concern. Anaerobic digestion (AD) is applied to effectively valorize SS by reclaiming energy in the form of methane. However, the complex floc structure of SS hinders hydrolysis during AD process, thus resulting in lower process efficiency. To overcome the rate-limiting hydrolysis, various pre-treatment methods have been developed to enhance AD efficiency. This review aims to provide insights into recent advancements in pre-treatment technologies, including mechanical, chemical, thermal, and biological methods. Each technology was critically evaluated and compared, and its relative worth was summarized based on full-scale applicability, along with economic benefits, AD performance improvements, and impact on digested sludge. The paper illuminates the readers about existing research gaps, and the future research needed for successful implementation of these approaches at full scale.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sewage sludge management and enhanced energy recovery using anaerobic digestion: an insight.\",\"authors\":\"Vinay Pratap, Sunil Kumar, Bholu Ram Yadav\",\"doi\":\"10.2166/wst.2024.269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sewage sludge (SS) is a potential source of bioenergy, yet its management is a global concern. Anaerobic digestion (AD) is applied to effectively valorize SS by reclaiming energy in the form of methane. However, the complex floc structure of SS hinders hydrolysis during AD process, thus resulting in lower process efficiency. To overcome the rate-limiting hydrolysis, various pre-treatment methods have been developed to enhance AD efficiency. This review aims to provide insights into recent advancements in pre-treatment technologies, including mechanical, chemical, thermal, and biological methods. Each technology was critically evaluated and compared, and its relative worth was summarized based on full-scale applicability, along with economic benefits, AD performance improvements, and impact on digested sludge. The paper illuminates the readers about existing research gaps, and the future research needed for successful implementation of these approaches at full scale.</p>\",\"PeriodicalId\":23653,\"journal\":{\"name\":\"Water Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2024.269\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2024.269","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

污水污泥(SS)是一种潜在的生物能源,但其管理却是全球关注的问题。厌氧消化(AD)可通过回收甲烷形式的能源,有效地提高污水污泥的价值。然而,固态污泥复杂的絮状结构阻碍了厌氧消化过程中的水解作用,从而降低了工艺效率。为了克服水解速度限制,人们开发了各种预处理方法来提高厌氧消化(AD)效率。本综述旨在介绍预处理技术的最新进展,包括机械、化学、热和生物方法。对每种技术都进行了严格的评估和比较,并根据其全面适用性、经济效益、厌氧消化(AD)性能改进和对消化污泥的影响总结了其相对价值。该论文向读者阐明了现有的研究差距,以及未来成功全面实施这些方法所需的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sewage sludge management and enhanced energy recovery using anaerobic digestion: an insight.

Sewage sludge (SS) is a potential source of bioenergy, yet its management is a global concern. Anaerobic digestion (AD) is applied to effectively valorize SS by reclaiming energy in the form of methane. However, the complex floc structure of SS hinders hydrolysis during AD process, thus resulting in lower process efficiency. To overcome the rate-limiting hydrolysis, various pre-treatment methods have been developed to enhance AD efficiency. This review aims to provide insights into recent advancements in pre-treatment technologies, including mechanical, chemical, thermal, and biological methods. Each technology was critically evaluated and compared, and its relative worth was summarized based on full-scale applicability, along with economic benefits, AD performance improvements, and impact on digested sludge. The paper illuminates the readers about existing research gaps, and the future research needed for successful implementation of these approaches at full scale.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Science and Technology
Water Science and Technology 环境科学-工程:环境
CiteScore
4.90
自引率
3.70%
发文量
366
审稿时长
4.4 months
期刊介绍: Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.
期刊最新文献
Sewage sludge management and enhanced energy recovery using anaerobic digestion: an insight. Spatial differences of dissolved organic matter composition and humification in an artificial lake. Wetland systems for water pollution control. Activated persulfate for efficient bisphenol A degradation via nitrogen-doped Fe/Mn bimetallic biochar. Assessment of water quality in wells and springs across various districts of Taza City, Morocco.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1