Patricia L Mitchell, Geneviève Pilon, Laurent Bazinet, Claudia Gagnon, S John Weisnagel, Hélène Jacques, Marie-Claude Vohl, André Marette
{"title":"采用转化方法确定鱼类营养素对心脏代谢健康的影响和作用机制--这需要一个村庄。","authors":"Patricia L Mitchell, Geneviève Pilon, Laurent Bazinet, Claudia Gagnon, S John Weisnagel, Hélène Jacques, Marie-Claude Vohl, André Marette","doi":"10.1139/apnm-2024-0111","DOIUrl":null,"url":null,"abstract":"<p><p>People use dietary supplements to offset nutritional deficiencies and manage metabolic dysfunction. While the beneficial effect of fish proteins on glucose homeostasis is well established, the ability of fish peptides to replicate the protein findings is less clear. With financial support from a programmatic Canadian Institutes of Health Research (CIHR) Team grant, we aimed to identify salmon peptide fractions (SPFs) with the potential to mitigate metabolic dysfunction. Additionally, the grant aims included assessing whether vitamin D, a nutrient commonly found in salmon, could potentiate the beneficial effects of salmon peptides. In parallel, technologies were developed to separate and filter the isolated peptides. We employed an integrative approach that combined nutritional interventions in animal models and human subjects to identify metabolic pathways regulated by salmon peptides and other fish nutrients. This combination of interdisciplinary expertise revealed that a SPF could be a therapeutic tool used in the prevention and management of cardiometabolic diseases. Herein, we present a perspective of our CIHR funded grant that utilized a translational approach to establish the cardiometabolic health effects and mechanisms of action of fish nutrients: from animal models to clinical trials.</p>","PeriodicalId":93878,"journal":{"name":"Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme","volume":" ","pages":"1600-1605"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Translational approach to establish the cardiometabolic health effects and mechanisms of action of fish nutrients-it takes a village.\",\"authors\":\"Patricia L Mitchell, Geneviève Pilon, Laurent Bazinet, Claudia Gagnon, S John Weisnagel, Hélène Jacques, Marie-Claude Vohl, André Marette\",\"doi\":\"10.1139/apnm-2024-0111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>People use dietary supplements to offset nutritional deficiencies and manage metabolic dysfunction. While the beneficial effect of fish proteins on glucose homeostasis is well established, the ability of fish peptides to replicate the protein findings is less clear. With financial support from a programmatic Canadian Institutes of Health Research (CIHR) Team grant, we aimed to identify salmon peptide fractions (SPFs) with the potential to mitigate metabolic dysfunction. Additionally, the grant aims included assessing whether vitamin D, a nutrient commonly found in salmon, could potentiate the beneficial effects of salmon peptides. In parallel, technologies were developed to separate and filter the isolated peptides. We employed an integrative approach that combined nutritional interventions in animal models and human subjects to identify metabolic pathways regulated by salmon peptides and other fish nutrients. This combination of interdisciplinary expertise revealed that a SPF could be a therapeutic tool used in the prevention and management of cardiometabolic diseases. Herein, we present a perspective of our CIHR funded grant that utilized a translational approach to establish the cardiometabolic health effects and mechanisms of action of fish nutrients: from animal models to clinical trials.</p>\",\"PeriodicalId\":93878,\"journal\":{\"name\":\"Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme\",\"volume\":\" \",\"pages\":\"1600-1605\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/apnm-2024-0111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/apnm-2024-0111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Translational approach to establish the cardiometabolic health effects and mechanisms of action of fish nutrients-it takes a village.
People use dietary supplements to offset nutritional deficiencies and manage metabolic dysfunction. While the beneficial effect of fish proteins on glucose homeostasis is well established, the ability of fish peptides to replicate the protein findings is less clear. With financial support from a programmatic Canadian Institutes of Health Research (CIHR) Team grant, we aimed to identify salmon peptide fractions (SPFs) with the potential to mitigate metabolic dysfunction. Additionally, the grant aims included assessing whether vitamin D, a nutrient commonly found in salmon, could potentiate the beneficial effects of salmon peptides. In parallel, technologies were developed to separate and filter the isolated peptides. We employed an integrative approach that combined nutritional interventions in animal models and human subjects to identify metabolic pathways regulated by salmon peptides and other fish nutrients. This combination of interdisciplinary expertise revealed that a SPF could be a therapeutic tool used in the prevention and management of cardiometabolic diseases. Herein, we present a perspective of our CIHR funded grant that utilized a translational approach to establish the cardiometabolic health effects and mechanisms of action of fish nutrients: from animal models to clinical trials.