Tenghui Hu , Xianpeng Wang , Lixin Tang , Qingfu Zhang
{"title":"基于分解的多模式多目标优化聚类辅助自适应进化算法","authors":"Tenghui Hu , Xianpeng Wang , Lixin Tang , Qingfu Zhang","doi":"10.1016/j.swevo.2024.101691","DOIUrl":null,"url":null,"abstract":"<div><p>A multimodal multiobjective optimization problem can have multiple equivalent Pareto Sets (PSs). Since the number of PSs may vary in different problems, if the population is restricted to a fixed size, the number of solutions found for each PS will inevitably fluctuate widely, which is undesirable for decision makers. To address the issue, this paper proposes a clustering-assisted adaptive evolutionary algorithm based on decomposition (CA-MMEA/D), whose search process can be roughly divided into two stages. In the first stage, an initial exploration of decision space is carried out, and then solutions with good convergence are used for clustering to estimate the number and location of multiple PSs. In the second stage, new search strategies are developed on the basis of clustering, which can take advantage of unimodal search methods. Experimental studies show that the proposed algorithm outperforms some state-of-the-art algorithms, and CA-MMEA/D can keep the number of solutions found for each PS at a relatively stable level for different problems, thus making it easier for decision makers to choose the desired solutions. The research in this paper provides new ideas for the design of decomposition-based multimodal multiobjective algorithms.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"91 ","pages":"Article 101691"},"PeriodicalIF":8.2000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A clustering-assisted adaptive evolutionary algorithm based on decomposition for multimodal multiobjective optimization\",\"authors\":\"Tenghui Hu , Xianpeng Wang , Lixin Tang , Qingfu Zhang\",\"doi\":\"10.1016/j.swevo.2024.101691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A multimodal multiobjective optimization problem can have multiple equivalent Pareto Sets (PSs). Since the number of PSs may vary in different problems, if the population is restricted to a fixed size, the number of solutions found for each PS will inevitably fluctuate widely, which is undesirable for decision makers. To address the issue, this paper proposes a clustering-assisted adaptive evolutionary algorithm based on decomposition (CA-MMEA/D), whose search process can be roughly divided into two stages. In the first stage, an initial exploration of decision space is carried out, and then solutions with good convergence are used for clustering to estimate the number and location of multiple PSs. In the second stage, new search strategies are developed on the basis of clustering, which can take advantage of unimodal search methods. Experimental studies show that the proposed algorithm outperforms some state-of-the-art algorithms, and CA-MMEA/D can keep the number of solutions found for each PS at a relatively stable level for different problems, thus making it easier for decision makers to choose the desired solutions. The research in this paper provides new ideas for the design of decomposition-based multimodal multiobjective algorithms.</p></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"91 \",\"pages\":\"Article 101691\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210650224002293\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002293","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A clustering-assisted adaptive evolutionary algorithm based on decomposition for multimodal multiobjective optimization
A multimodal multiobjective optimization problem can have multiple equivalent Pareto Sets (PSs). Since the number of PSs may vary in different problems, if the population is restricted to a fixed size, the number of solutions found for each PS will inevitably fluctuate widely, which is undesirable for decision makers. To address the issue, this paper proposes a clustering-assisted adaptive evolutionary algorithm based on decomposition (CA-MMEA/D), whose search process can be roughly divided into two stages. In the first stage, an initial exploration of decision space is carried out, and then solutions with good convergence are used for clustering to estimate the number and location of multiple PSs. In the second stage, new search strategies are developed on the basis of clustering, which can take advantage of unimodal search methods. Experimental studies show that the proposed algorithm outperforms some state-of-the-art algorithms, and CA-MMEA/D can keep the number of solutions found for each PS at a relatively stable level for different problems, thus making it easier for decision makers to choose the desired solutions. The research in this paper provides new ideas for the design of decomposition-based multimodal multiobjective algorithms.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.