鉴定和分析非酒精性脂肪性肝炎-肝细胞癌转化过程中的重要基因:生物信息学分析和机器学习方法

IF 3.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular immunology Pub Date : 2024-08-13 DOI:10.1016/j.molimm.2024.07.015
{"title":"鉴定和分析非酒精性脂肪性肝炎-肝细胞癌转化过程中的重要基因:生物信息学分析和机器学习方法","authors":"","doi":"10.1016/j.molimm.2024.07.015","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>Nonalcoholic steatohepatitis (NASH) has been an increasingly significant contributor to hepatocellular carcinoma (HCC). Understanding the progression from NASH to HCC is critical to early diagnosis and elucidating the underlying mechanisms.</p></div><div><h3>Results</h3><p>5 significant prognostic genes related to NASH-HCC transformation were identified through algorithm selection, which were ME1, TP53I3, SOCS2, GADD45G and CYP7A1. A diagnostic model for NASH prediction was established (AUC=0.988). TP53I3 and SOCS2 were selected as potential critical genes in the progression of NASH-HCC by external dataset validation and <em>in vitro</em> experiments on NASH and HCC cell lines. Immune infiltration analysis illustrated the correlation between 5 significant prognostic genes and immune cells. Single-cell analysis identified hepatocytes related to NASH-HCC transformation markers, revealing their promoting role in the transformation from NASH to HCC.</p></div><div><h3>Conclusion</h3><p>With bulk-seq analysis and single-cell analysis, 5 significant prognostic genes related to NASH-HCC transformation were identified and validated at both dataset and <em>in vitro</em> experiment level. Among them, TP53I3 and SOCS2 might be potential critical genes in NASH-HCC progression. Single-cell analysis identified and revealed the critical role that NASH-HCC related hepatocytes play in NASH-HCC tansformation. Our research may introduce a new perspective to the diagnosis, treatment of NASH-related HCC.</p></div>","PeriodicalId":18938,"journal":{"name":"Molecular immunology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and analysis of significant genes in nonalcoholic steatohepatitis-hepatocellular carcinoma transformation: Bioinformatics analysis and machine learning approach\",\"authors\":\"\",\"doi\":\"10.1016/j.molimm.2024.07.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>Nonalcoholic steatohepatitis (NASH) has been an increasingly significant contributor to hepatocellular carcinoma (HCC). Understanding the progression from NASH to HCC is critical to early diagnosis and elucidating the underlying mechanisms.</p></div><div><h3>Results</h3><p>5 significant prognostic genes related to NASH-HCC transformation were identified through algorithm selection, which were ME1, TP53I3, SOCS2, GADD45G and CYP7A1. A diagnostic model for NASH prediction was established (AUC=0.988). TP53I3 and SOCS2 were selected as potential critical genes in the progression of NASH-HCC by external dataset validation and <em>in vitro</em> experiments on NASH and HCC cell lines. Immune infiltration analysis illustrated the correlation between 5 significant prognostic genes and immune cells. Single-cell analysis identified hepatocytes related to NASH-HCC transformation markers, revealing their promoting role in the transformation from NASH to HCC.</p></div><div><h3>Conclusion</h3><p>With bulk-seq analysis and single-cell analysis, 5 significant prognostic genes related to NASH-HCC transformation were identified and validated at both dataset and <em>in vitro</em> experiment level. Among them, TP53I3 and SOCS2 might be potential critical genes in NASH-HCC progression. Single-cell analysis identified and revealed the critical role that NASH-HCC related hepatocytes play in NASH-HCC tansformation. Our research may introduce a new perspective to the diagnosis, treatment of NASH-related HCC.</p></div>\",\"PeriodicalId\":18938,\"journal\":{\"name\":\"Molecular immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0161589024001445\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0161589024001445","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的NASH(Nonalcoholic steatohepatitis)越来越成为肝细胞癌(HCC)的重要诱因。结果 通过算法选择确定了5个与NASH-HCC转化相关的重要预后基因,它们是ME1、TP53I3、SOCS2、GADD45G和CYP7A1。建立了预测 NASH 的诊断模型(AUC=0.988)。通过外部数据集验证以及 NASH 和 HCC 细胞系的体外实验,TP53I3 和 SOCS2 被选为 NASH-HCC 进展过程中的潜在关键基因。免疫浸润分析表明了 5 个重要预后基因与免疫细胞之间的相关性。结论通过批量序列分析和单细胞分析,发现了5个与NASH-HCC转化相关的重要预后基因,并在数据集和体外实验水平上进行了验证。其中,TP53I3和SOCS2可能是NASH-HCC进展的潜在关键基因。单细胞分析发现并揭示了NASH-HCC相关肝细胞在NASH-HCC转化中的关键作用。我们的研究可能会为 NASH 相关 HCC 的诊断和治疗带来新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification and analysis of significant genes in nonalcoholic steatohepatitis-hepatocellular carcinoma transformation: Bioinformatics analysis and machine learning approach

Purpose

Nonalcoholic steatohepatitis (NASH) has been an increasingly significant contributor to hepatocellular carcinoma (HCC). Understanding the progression from NASH to HCC is critical to early diagnosis and elucidating the underlying mechanisms.

Results

5 significant prognostic genes related to NASH-HCC transformation were identified through algorithm selection, which were ME1, TP53I3, SOCS2, GADD45G and CYP7A1. A diagnostic model for NASH prediction was established (AUC=0.988). TP53I3 and SOCS2 were selected as potential critical genes in the progression of NASH-HCC by external dataset validation and in vitro experiments on NASH and HCC cell lines. Immune infiltration analysis illustrated the correlation between 5 significant prognostic genes and immune cells. Single-cell analysis identified hepatocytes related to NASH-HCC transformation markers, revealing their promoting role in the transformation from NASH to HCC.

Conclusion

With bulk-seq analysis and single-cell analysis, 5 significant prognostic genes related to NASH-HCC transformation were identified and validated at both dataset and in vitro experiment level. Among them, TP53I3 and SOCS2 might be potential critical genes in NASH-HCC progression. Single-cell analysis identified and revealed the critical role that NASH-HCC related hepatocytes play in NASH-HCC tansformation. Our research may introduce a new perspective to the diagnosis, treatment of NASH-related HCC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular immunology
Molecular immunology 医学-免疫学
CiteScore
6.90
自引率
2.80%
发文量
324
审稿时长
50 days
期刊介绍: Molecular Immunology publishes original articles, reviews and commentaries on all areas of immunology, with a particular focus on description of cellular, biochemical or genetic mechanisms underlying immunological phenomena. Studies on all model organisms, from invertebrates to humans, are suitable. Examples include, but are not restricted to: Infection, autoimmunity, transplantation, immunodeficiencies, inflammation and tumor immunology Mechanisms of induction, regulation and termination of innate and adaptive immunity Intercellular communication, cooperation and regulation Intracellular mechanisms of immunity (endocytosis, protein trafficking, pathogen recognition, antigen presentation, etc) Mechanisms of action of the cells and molecules of the immune system Structural analysis Development of the immune system Comparative immunology and evolution of the immune system "Omics" studies and bioinformatics Vaccines, biotechnology and therapeutic manipulation of the immune system (therapeutic antibodies, cytokines, cellular therapies, etc) Technical developments.
期刊最新文献
Cordyceps militaris fruit body activates myeloid dendritic cells via a Dectin-1-mediated pathway Negative regulation of activation-induced cytidine deaminase gene transcription in developing B cells by a PU.1-interacting intronic region Sensitization to latex and food allergens in atopic dermatitis patients according to ALEX2 Allergy Xplorer test Exploring the genome-wide transcriptomic responses of Bulinus truncatus to Schistosoma haematobium infection: An important host-parasite system involved in the transmission of human urogenital schistosomiasis Dendritic/antigen presenting cell mediated provision of T-cell receptor gamma delta (TCRγδ) expressing cells contributes to improving antileukemic reactions ex vivo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1