用于参数识别的增强型调谐群优化技术的多模型评估

IF 4.7 3区 工程技术 Q2 ENERGY & FUELS Energy Reports Pub Date : 2024-08-13 DOI:10.1016/j.egyr.2024.08.015
{"title":"用于参数识别的增强型调谐群优化技术的多模型评估","authors":"","doi":"10.1016/j.egyr.2024.08.015","DOIUrl":null,"url":null,"abstract":"<div><p>Parameter identification for a proton exchange membrane fuel cell (PEMFC) entails employing optimisation techniques to discover the best unknown parameter values required to generate an accurate fuel cell performance prediction model. This technique, known as parameter identification, is important since manufacturers' datasheets do not usually disclose these values. To address this, the manuscript examines five optimisation strategies, including the suggested algorithm, Enhanced Tunicate Swarm Optimizer (ETSO), for predicting these parameters in PEMFCs. Each technique uses the six unknown parameters as decision variables, aiming to reduce the sum squared error (SSE) between anticipated and observed cell voltages. The data reveal that the suggested strategy outperforms existing approaches and cutting-edge optimizers. The two models are used to assess the dependability and performance of the PEMFC. The results are also compared to the non-parametric tests, and it is found that the suggested method outperforms the other algorithms in both suggested models.</p></div>","PeriodicalId":11798,"journal":{"name":"Energy Reports","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352484724005043/pdfft?md5=52d424180a8d69805bc5b0e4fbc862b8&pid=1-s2.0-S2352484724005043-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A multi-model evaluation of Enhanced Tunicate Swarm Optimization for parameter identification\",\"authors\":\"\",\"doi\":\"10.1016/j.egyr.2024.08.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Parameter identification for a proton exchange membrane fuel cell (PEMFC) entails employing optimisation techniques to discover the best unknown parameter values required to generate an accurate fuel cell performance prediction model. This technique, known as parameter identification, is important since manufacturers' datasheets do not usually disclose these values. To address this, the manuscript examines five optimisation strategies, including the suggested algorithm, Enhanced Tunicate Swarm Optimizer (ETSO), for predicting these parameters in PEMFCs. Each technique uses the six unknown parameters as decision variables, aiming to reduce the sum squared error (SSE) between anticipated and observed cell voltages. The data reveal that the suggested strategy outperforms existing approaches and cutting-edge optimizers. The two models are used to assess the dependability and performance of the PEMFC. The results are also compared to the non-parametric tests, and it is found that the suggested method outperforms the other algorithms in both suggested models.</p></div>\",\"PeriodicalId\":11798,\"journal\":{\"name\":\"Energy Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352484724005043/pdfft?md5=52d424180a8d69805bc5b0e4fbc862b8&pid=1-s2.0-S2352484724005043-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352484724005043\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352484724005043","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

质子交换膜燃料电池(PEMFC)的参数识别需要采用优化技术来发现生成精确燃料电池性能预测模型所需的最佳未知参数值。这项技术被称为参数识别,非常重要,因为制造商的数据表通常不会披露这些参数值。为了解决这个问题,手稿研究了五种优化策略,包括建议的算法增强调谐群优化器(ETSO),用于预测 PEMFC 中的这些参数。每种技术都将六个未知参数作为决策变量,旨在减少预期电池电压与观测电池电压之间的平方和误差 (SSE)。数据显示,建议的策略优于现有方法和最先进的优化器。这两个模型用于评估 PEMFC 的可靠性和性能。结果还与非参数检验进行了比较,发现所建议的方法在两个建议模型中都优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multi-model evaluation of Enhanced Tunicate Swarm Optimization for parameter identification

Parameter identification for a proton exchange membrane fuel cell (PEMFC) entails employing optimisation techniques to discover the best unknown parameter values required to generate an accurate fuel cell performance prediction model. This technique, known as parameter identification, is important since manufacturers' datasheets do not usually disclose these values. To address this, the manuscript examines five optimisation strategies, including the suggested algorithm, Enhanced Tunicate Swarm Optimizer (ETSO), for predicting these parameters in PEMFCs. Each technique uses the six unknown parameters as decision variables, aiming to reduce the sum squared error (SSE) between anticipated and observed cell voltages. The data reveal that the suggested strategy outperforms existing approaches and cutting-edge optimizers. The two models are used to assess the dependability and performance of the PEMFC. The results are also compared to the non-parametric tests, and it is found that the suggested method outperforms the other algorithms in both suggested models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Reports
Energy Reports Energy-General Energy
CiteScore
8.20
自引率
13.50%
发文量
2608
审稿时长
38 days
期刊介绍: Energy Reports is a new online multidisciplinary open access journal which focuses on publishing new research in the area of Energy with a rapid review and publication time. Energy Reports will be open to direct submissions and also to submissions from other Elsevier Energy journals, whose Editors have determined that Energy Reports would be a better fit.
期刊最新文献
Optimizing technological configurations in residential energy systems with vehicle-to-home integration and community-level power sharing Corrigendum to “Load forecasting method based on CNN and extended LSTM”, [Energy Rep., vol. 12, December 2024, Pages 2452–2461] Application of wavelet and seasonal-based emotional ANN (EANN) models to predict solar irradiance Corrigendum to “Design and implementation of an autonomous device with an app to monitor the performance of photovoltaic panels” [Energy Rep. 12 (2024) 2498–2510] Biogas generation from food waste through anaerobic digestion technology with emphasis on enhancing circular economy in Sub-Saharan Africa – A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1