Thaís Lima Figueiredo, Valéria Xavier de Oliveira Apolinário, Janerson José Coelho, Luciano Cavalcante Muniz, Maria Karoline de Carvalho Rodrigues de Sousa, Raabe Alves Souza, Giselle Cristina da Silva Carneiro, Natannael Castro Vilhena, Joaquim Bezerra Costa, Jose Carlos Batista Dubeux Jr
{"title":"在湿热带农林系统中施用尿素肥料以提高肉牛的性能潜力","authors":"Thaís Lima Figueiredo, Valéria Xavier de Oliveira Apolinário, Janerson José Coelho, Luciano Cavalcante Muniz, Maria Karoline de Carvalho Rodrigues de Sousa, Raabe Alves Souza, Giselle Cristina da Silva Carneiro, Natannael Castro Vilhena, Joaquim Bezerra Costa, Jose Carlos Batista Dubeux Jr","doi":"10.1111/gfs.12683","DOIUrl":null,"url":null,"abstract":"<p>This study hypothesized that urea fertilization could optimize animal performance in an agroforestry system. This study evaluated how increasing rates of N fertilization (0, 100, 200, and 400 kg N ha<sup>−1</sup> year<sup>−1</sup>) using urea (CH<sub>4</sub>N<sub>2</sub>O) affected forage mass, nutritive value, and beef cattle (<i>Bos indicus</i>) performance in an agroforestry system with Massai grass (<i>Megathyrsus maximus</i> Jacq. cv. Massai) and legume tree (<i>Mimosa caesalpiniifolia</i> Benth.), in the humid tropic region of Brazil, over 2-year period. The experiment was carried out in a randomized complete block design with four treatments (N fertilizer rates) and three replications. Forage mass was positive and linearly affected by N fertilization (<i>p</i> = .0236, <i>R</i><sup>2</sup> = 0.92), ranging from 1297 to 1583 kg DM ha<sup>−1</sup> under 0 and 400 kg N ha<sup>−1</sup> year<sup>−1</sup>, respectively. There was greater average forage mass during the rainy period (1826 kg ha<sup>−1</sup>) (<i>p</i> < .05). Crude protein in green forage mass increased linearly (<i>p</i> = .0041, <i>R</i><sup>2</sup> = 0.91) in function of the N applied. Cattle average daily gain showed a positive quadratic response to the rates of N applied (<i>p</i> = .0298, <i>R</i><sup>2</sup> = 0.97), ranging from 0.46 kg to 0.68 kg animal day<sup>−1</sup>; and the gain per area increased linearly from 1.84 to 2.68 kg LW ha<sup>−1</sup> day<sup>−1</sup> (<i>p</i> = .0640, <i>R</i><sup>2</sup> = 0.96). The findings indicate that applying 200 kg N ha<sup>−1</sup> year<sup>−1</sup>, split-applied during the rainy season, would yield acceptable outcomes in terms of forage mass, nutritive value, and animal performance for this type of agroforestry system.</p>","PeriodicalId":12767,"journal":{"name":"Grass and Forage Science","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urea fertilization for potentializing beef cattle performance in agroforestry systems in the humid tropics\",\"authors\":\"Thaís Lima Figueiredo, Valéria Xavier de Oliveira Apolinário, Janerson José Coelho, Luciano Cavalcante Muniz, Maria Karoline de Carvalho Rodrigues de Sousa, Raabe Alves Souza, Giselle Cristina da Silva Carneiro, Natannael Castro Vilhena, Joaquim Bezerra Costa, Jose Carlos Batista Dubeux Jr\",\"doi\":\"10.1111/gfs.12683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study hypothesized that urea fertilization could optimize animal performance in an agroforestry system. This study evaluated how increasing rates of N fertilization (0, 100, 200, and 400 kg N ha<sup>−1</sup> year<sup>−1</sup>) using urea (CH<sub>4</sub>N<sub>2</sub>O) affected forage mass, nutritive value, and beef cattle (<i>Bos indicus</i>) performance in an agroforestry system with Massai grass (<i>Megathyrsus maximus</i> Jacq. cv. Massai) and legume tree (<i>Mimosa caesalpiniifolia</i> Benth.), in the humid tropic region of Brazil, over 2-year period. The experiment was carried out in a randomized complete block design with four treatments (N fertilizer rates) and three replications. Forage mass was positive and linearly affected by N fertilization (<i>p</i> = .0236, <i>R</i><sup>2</sup> = 0.92), ranging from 1297 to 1583 kg DM ha<sup>−1</sup> under 0 and 400 kg N ha<sup>−1</sup> year<sup>−1</sup>, respectively. There was greater average forage mass during the rainy period (1826 kg ha<sup>−1</sup>) (<i>p</i> < .05). Crude protein in green forage mass increased linearly (<i>p</i> = .0041, <i>R</i><sup>2</sup> = 0.91) in function of the N applied. Cattle average daily gain showed a positive quadratic response to the rates of N applied (<i>p</i> = .0298, <i>R</i><sup>2</sup> = 0.97), ranging from 0.46 kg to 0.68 kg animal day<sup>−1</sup>; and the gain per area increased linearly from 1.84 to 2.68 kg LW ha<sup>−1</sup> day<sup>−1</sup> (<i>p</i> = .0640, <i>R</i><sup>2</sup> = 0.96). The findings indicate that applying 200 kg N ha<sup>−1</sup> year<sup>−1</sup>, split-applied during the rainy season, would yield acceptable outcomes in terms of forage mass, nutritive value, and animal performance for this type of agroforestry system.</p>\",\"PeriodicalId\":12767,\"journal\":{\"name\":\"Grass and Forage Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Grass and Forage Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gfs.12683\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grass and Forage Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gfs.12683","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Urea fertilization for potentializing beef cattle performance in agroforestry systems in the humid tropics
This study hypothesized that urea fertilization could optimize animal performance in an agroforestry system. This study evaluated how increasing rates of N fertilization (0, 100, 200, and 400 kg N ha−1 year−1) using urea (CH4N2O) affected forage mass, nutritive value, and beef cattle (Bos indicus) performance in an agroforestry system with Massai grass (Megathyrsus maximus Jacq. cv. Massai) and legume tree (Mimosa caesalpiniifolia Benth.), in the humid tropic region of Brazil, over 2-year period. The experiment was carried out in a randomized complete block design with four treatments (N fertilizer rates) and three replications. Forage mass was positive and linearly affected by N fertilization (p = .0236, R2 = 0.92), ranging from 1297 to 1583 kg DM ha−1 under 0 and 400 kg N ha−1 year−1, respectively. There was greater average forage mass during the rainy period (1826 kg ha−1) (p < .05). Crude protein in green forage mass increased linearly (p = .0041, R2 = 0.91) in function of the N applied. Cattle average daily gain showed a positive quadratic response to the rates of N applied (p = .0298, R2 = 0.97), ranging from 0.46 kg to 0.68 kg animal day−1; and the gain per area increased linearly from 1.84 to 2.68 kg LW ha−1 day−1 (p = .0640, R2 = 0.96). The findings indicate that applying 200 kg N ha−1 year−1, split-applied during the rainy season, would yield acceptable outcomes in terms of forage mass, nutritive value, and animal performance for this type of agroforestry system.
期刊介绍:
Grass and Forage Science is a major English language journal that publishes the results of research and development in all aspects of grass and forage production, management and utilization; reviews of the state of knowledge on relevant topics; and book reviews. Authors are also invited to submit papers on non-agricultural aspects of grassland management such as recreational and amenity use and the environmental implications of all grassland systems. The Journal considers papers from all climatic zones.