缺血性脑卒中患者颅内动脉粥样硬化与白质高密度之间的关系:一项使用高分辨率磁共振血管壁成像的回顾性横断面研究。

IF 2.9 2区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Quantitative Imaging in Medicine and Surgery Pub Date : 2024-08-01 Epub Date: 2024-07-11 DOI:10.21037/qims-23-64
Meng Li, Xiaowei Song, Qiao Wei, Jian Wu, Shi Wang, Xueyu Liu, Cong Guo, Qian Gao, Xuan Zhou, Yanan Niu, Xuanzhu Guo, Xihai Zhao, Liping Chen
{"title":"缺血性脑卒中患者颅内动脉粥样硬化与白质高密度之间的关系:一项使用高分辨率磁共振血管壁成像的回顾性横断面研究。","authors":"Meng Li, Xiaowei Song, Qiao Wei, Jian Wu, Shi Wang, Xueyu Liu, Cong Guo, Qian Gao, Xuan Zhou, Yanan Niu, Xuanzhu Guo, Xihai Zhao, Liping Chen","doi":"10.21037/qims-23-64","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Both intracranial atherosclerosis and white matter hyperintensity (WMH) are prevalent among the stroke population. However, the relationship between intracranial atherosclerosis and WMH has not been fully elucidated. Therefore, the aim of this study was to investigate the relationship between the characteristics of intracranial atherosclerotic plaques and the severity of WMH in patients with ischemic stroke using high-resolution magnetic resonance vessel wall imaging.</p><p><strong>Methods: </strong>Patients hospitalized with ischemic stroke and concurrent intracranial atherosclerosis at Beijing Tsinghua Changgung Hospital, a tertiary comprehensive stroke center, who underwent high-resolution magnetic resonance vessel wall imaging and conventional brain magnetic resonance imaging were continuously recruited from January 2018 to December 2018. Both intracranial plaque characteristics (plaque number, maximum wall thickness, luminal stenosis, T1 hyperintensity, and plaque length) and WMH severity (Fazekas score and volume) were evaluated. Spearman correlation or point-biserial correlation analysis was used to determine the association between clinical characteristics and WMH volume. The independent association between intracranial plaque characteristics and the severity as well as WMH score was analyzed using logistic regression. The associations of intracranial plaque characteristics with total white matter hyperintensity (TWMH) volume, periventricular white matter hyperintensity (PWMH) volume and deep white matter hyperintensity (DWMH) volume were determined using multilevel mixed-effects linear regression.</p><p><strong>Results: </strong>A total of 159 subjects (mean age: 64.0±12.5 years; 103 males) were included into analysis. Spearman correlation analysis indicated that age was associated with TWMH volume (r=0.529, P<0.001), PWMH volume (r=0.523, P<0.001) and DWMH volume (r=0.515, P<0.001). Point-biserial correlation analysis indicated that smoking (r=-0.183, P=0.021) and hypertension (r=0.159, P=0.045) were associated with DWMH volume. After adjusting for confounding factors, logistic regression analysis showed plaque number was significantly associated with the presence of severe WMH [odds ratio (OR), 1.590; 95% CI, 1.241-2.035, P<0.001], PWMH score of 3 (OR, 1.726; 95% CI, 1.074-2.775, P=0.024), and DWMH score of 2 (OR, 1.561; 95% CI, 1.150-2.118, P=0.004). Intracranial artery luminal stenosis was associated with presence of severe WMH (OR, 1.032; 95% CI, 1.002-1.064, P=0.039) and PWMH score of 2 (OR, 1.057; 95% CI, 1.008-1.109, P=0.023). Multilevel mixed-effects linear regression analysis showed that plaque number was associated with DWMH volume (β=0.128; 95% CI, 0.016-0.240; P=0.026) after adjusted for age and sex.</p><p><strong>Conclusions: </strong>In ischemic stroke patients, intracranial atherosclerotic plaque characteristics as measured by plaque number and luminal stenosis were associated with WMH burden.</p>","PeriodicalId":54267,"journal":{"name":"Quantitative Imaging in Medicine and Surgery","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320538/pdf/","citationCount":"0","resultStr":"{\"title\":\"The relationship between intracranial atherosclerosis and white matter hyperintensity in ischemic stroke patients: a retrospective cross-sectional study using high-resolution magnetic resonance vessel wall imaging.\",\"authors\":\"Meng Li, Xiaowei Song, Qiao Wei, Jian Wu, Shi Wang, Xueyu Liu, Cong Guo, Qian Gao, Xuan Zhou, Yanan Niu, Xuanzhu Guo, Xihai Zhao, Liping Chen\",\"doi\":\"10.21037/qims-23-64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Both intracranial atherosclerosis and white matter hyperintensity (WMH) are prevalent among the stroke population. However, the relationship between intracranial atherosclerosis and WMH has not been fully elucidated. Therefore, the aim of this study was to investigate the relationship between the characteristics of intracranial atherosclerotic plaques and the severity of WMH in patients with ischemic stroke using high-resolution magnetic resonance vessel wall imaging.</p><p><strong>Methods: </strong>Patients hospitalized with ischemic stroke and concurrent intracranial atherosclerosis at Beijing Tsinghua Changgung Hospital, a tertiary comprehensive stroke center, who underwent high-resolution magnetic resonance vessel wall imaging and conventional brain magnetic resonance imaging were continuously recruited from January 2018 to December 2018. Both intracranial plaque characteristics (plaque number, maximum wall thickness, luminal stenosis, T1 hyperintensity, and plaque length) and WMH severity (Fazekas score and volume) were evaluated. Spearman correlation or point-biserial correlation analysis was used to determine the association between clinical characteristics and WMH volume. The independent association between intracranial plaque characteristics and the severity as well as WMH score was analyzed using logistic regression. The associations of intracranial plaque characteristics with total white matter hyperintensity (TWMH) volume, periventricular white matter hyperintensity (PWMH) volume and deep white matter hyperintensity (DWMH) volume were determined using multilevel mixed-effects linear regression.</p><p><strong>Results: </strong>A total of 159 subjects (mean age: 64.0±12.5 years; 103 males) were included into analysis. Spearman correlation analysis indicated that age was associated with TWMH volume (r=0.529, P<0.001), PWMH volume (r=0.523, P<0.001) and DWMH volume (r=0.515, P<0.001). Point-biserial correlation analysis indicated that smoking (r=-0.183, P=0.021) and hypertension (r=0.159, P=0.045) were associated with DWMH volume. After adjusting for confounding factors, logistic regression analysis showed plaque number was significantly associated with the presence of severe WMH [odds ratio (OR), 1.590; 95% CI, 1.241-2.035, P<0.001], PWMH score of 3 (OR, 1.726; 95% CI, 1.074-2.775, P=0.024), and DWMH score of 2 (OR, 1.561; 95% CI, 1.150-2.118, P=0.004). Intracranial artery luminal stenosis was associated with presence of severe WMH (OR, 1.032; 95% CI, 1.002-1.064, P=0.039) and PWMH score of 2 (OR, 1.057; 95% CI, 1.008-1.109, P=0.023). Multilevel mixed-effects linear regression analysis showed that plaque number was associated with DWMH volume (β=0.128; 95% CI, 0.016-0.240; P=0.026) after adjusted for age and sex.</p><p><strong>Conclusions: </strong>In ischemic stroke patients, intracranial atherosclerotic plaque characteristics as measured by plaque number and luminal stenosis were associated with WMH burden.</p>\",\"PeriodicalId\":54267,\"journal\":{\"name\":\"Quantitative Imaging in Medicine and Surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320538/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Imaging in Medicine and Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21037/qims-23-64\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Imaging in Medicine and Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/qims-23-64","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景:颅内动脉粥样硬化和白质高密度(WMH)在中风人群中普遍存在。然而,颅内动脉粥样硬化与 WMH 之间的关系尚未完全阐明。因此,本研究旨在利用高分辨率磁共振血管壁成像技术研究缺血性脑卒中患者颅内动脉粥样硬化斑块的特征与 WMH 严重程度之间的关系:2018年1月至2018年12月,连续招募在三级综合卒中中心北京清华长庚医院住院的缺血性脑卒中并发颅内动脉粥样硬化患者,对其进行高分辨磁共振血管壁成像和常规脑磁共振成像检查。对颅内斑块特征(斑块数量、最大壁厚、管腔狭窄、T1高密度和斑块长度)和WMH严重程度(Fazekas评分和体积)进行了评估。斯皮尔曼相关或点-阶梯相关分析用于确定临床特征与 WMH 体积之间的关联。使用逻辑回归分析了颅内斑块特征与严重程度以及 WMH 评分之间的独立关联。采用多水平混合效应线性回归法确定了颅内斑块特征与白质总高密度(TWMH)体积、脑室周围白质高密度(PWMH)体积和深部白质高密度(DWMH)体积之间的关系:共纳入 159 名受试者(平均年龄:64.0±12.5 岁;103 名男性)进行分析。Spearman相关性分析表明,年龄与TWMH体积相关(r=0.529,PC结论:在缺血性脑卒中患者中,以斑块数量和管腔狭窄度衡量的颅内动脉粥样硬化斑块特征与 WMH 负荷有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The relationship between intracranial atherosclerosis and white matter hyperintensity in ischemic stroke patients: a retrospective cross-sectional study using high-resolution magnetic resonance vessel wall imaging.

Background: Both intracranial atherosclerosis and white matter hyperintensity (WMH) are prevalent among the stroke population. However, the relationship between intracranial atherosclerosis and WMH has not been fully elucidated. Therefore, the aim of this study was to investigate the relationship between the characteristics of intracranial atherosclerotic plaques and the severity of WMH in patients with ischemic stroke using high-resolution magnetic resonance vessel wall imaging.

Methods: Patients hospitalized with ischemic stroke and concurrent intracranial atherosclerosis at Beijing Tsinghua Changgung Hospital, a tertiary comprehensive stroke center, who underwent high-resolution magnetic resonance vessel wall imaging and conventional brain magnetic resonance imaging were continuously recruited from January 2018 to December 2018. Both intracranial plaque characteristics (plaque number, maximum wall thickness, luminal stenosis, T1 hyperintensity, and plaque length) and WMH severity (Fazekas score and volume) were evaluated. Spearman correlation or point-biserial correlation analysis was used to determine the association between clinical characteristics and WMH volume. The independent association between intracranial plaque characteristics and the severity as well as WMH score was analyzed using logistic regression. The associations of intracranial plaque characteristics with total white matter hyperintensity (TWMH) volume, periventricular white matter hyperintensity (PWMH) volume and deep white matter hyperintensity (DWMH) volume were determined using multilevel mixed-effects linear regression.

Results: A total of 159 subjects (mean age: 64.0±12.5 years; 103 males) were included into analysis. Spearman correlation analysis indicated that age was associated with TWMH volume (r=0.529, P<0.001), PWMH volume (r=0.523, P<0.001) and DWMH volume (r=0.515, P<0.001). Point-biserial correlation analysis indicated that smoking (r=-0.183, P=0.021) and hypertension (r=0.159, P=0.045) were associated with DWMH volume. After adjusting for confounding factors, logistic regression analysis showed plaque number was significantly associated with the presence of severe WMH [odds ratio (OR), 1.590; 95% CI, 1.241-2.035, P<0.001], PWMH score of 3 (OR, 1.726; 95% CI, 1.074-2.775, P=0.024), and DWMH score of 2 (OR, 1.561; 95% CI, 1.150-2.118, P=0.004). Intracranial artery luminal stenosis was associated with presence of severe WMH (OR, 1.032; 95% CI, 1.002-1.064, P=0.039) and PWMH score of 2 (OR, 1.057; 95% CI, 1.008-1.109, P=0.023). Multilevel mixed-effects linear regression analysis showed that plaque number was associated with DWMH volume (β=0.128; 95% CI, 0.016-0.240; P=0.026) after adjusted for age and sex.

Conclusions: In ischemic stroke patients, intracranial atherosclerotic plaque characteristics as measured by plaque number and luminal stenosis were associated with WMH burden.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantitative Imaging in Medicine and Surgery
Quantitative Imaging in Medicine and Surgery Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
4.20
自引率
17.90%
发文量
252
期刊介绍: Information not localized
期刊最新文献
Deep learning-based quantitative morphological study of anteroposterior digital radiographs of the lumbar spine. Automatic measurement of anatomical parameters of the lumbar vertebral body and the intervertebral disc on radiographs by deep learning. Bone age assessment by multi-granularity and multi-attention feature encoding. Can cereal-based oral contrast agents-assisted ultrasound become an alternative to non-contrast magnetic resonance imaging (MRI) in radiological follow-up for pancreatic cystic lesions? Cardiac intravoxel incoherent motion diffusion-weighted imaging to assess myocardial microcirculation dysfunction in hypertension.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1